Lo studente che completerà il corso sarà in grado di dimostrare una solida conoscenza dei principali argomenti di anatomia radiologica sia per quanto riguarda l'imaging radiografico che cross-sectional. Lo studente acquisirà nozioni di fisica in particolare riguardo i processi che sono alla base delle differenti modalità radiologiche. Agli studenti inoltre verrà insegnato come eseguire correttamente le proiezioni radiografiche per le diverse regioni corporee.
The student who completes the course will be able to demonstrate a solid knowledge of the main topics related to radiological anatomy either at radiographic or cross-sectional imaging. The student will acquire knowledge about physics, in particular about those processes strongly related to different radiological modalities. The students will be teached how to correctly perform radiographic projections for different anatomical regions.
Lo studente saprà riconoscere le diverse strutture anatomiche alla visualizzazione di immagini radiografiche o di imaging cross-sectional (ecografia, TC , RM)
Lo studente conoscerà la fisica alla base del funzionamento delle metodiche di imaging.
Lo studente saprà eseguire correttamente le proiezioni radiografiche adeguate alla visualizzazione delle diverse regioni corporee.
The student will be able to recgnize different anatomical structures when visualizing radiography or cross.sectional images (US, CT, MR)
The student will be familial with phisics concepts that are fundamental for imaging modalities.
The student will be able to correctly perform adequate radiological projections for different body regions.
Allo studente sarà richiesto di partecipare attivamente alle lezioni mediante la preparazione e presentazione di argomenti selezionati o chiedendogli di riassumere argomenti già trattati.
Potranno essere organizzati lavori di gruppo.
The student will be asked to prepare and present selected topics or to summarized pics treated on previous lessons.
Working in groups can be organised.
Durante il tirocinio verrà valutata la modalità di interazione con i pazienti e i colleghi.
During the training the way of behaving with patients and collegues will be evaluated.
Per seguire in modo proficuo il corso sono richieste predisposizione alle materie scientifiche e sufficiente conoscenza della lingua inglese.
For a fruitful course a general predisposition to scientific subjects is required, together with a sufficient knowledge of english language.
Anatomia Radiologica
Fisica Radiologica:
Proiezioni Radiografiche:
Radiological anatomy
Musculoskeletal system: references to normal anatomy and radiographic anatomy of the upper limb, lower spine, pelvis, rib cage
Respiratory system: Basics of normal anatomy and radiographic anatomy and CT of the chest
Digestive system: References to normal anatomy and CT and MRI anatomy of the liver, biliary tract, pancreas, esophagus, stomach, interstinum.
Genitourinary system: References of normal anatomy and CT and MRI anatomy of kidneys, adrenals, urinary excretory tract, prostate.
Radiological Physics:
Energy and Matter: unit of measurement, mass-energy equivalence. Introduction to the atomic structure: nuclei, atoms and molecules; the concept of binding energy. Atomic mass, molecular mass and Avogadro number. Introduction to the Bohr-Sommerfeld model of the atom. Thomson's experiment. Neutrons and protons, fundamental properties. Atomic number (Z) and mass number (A). Isotopes and their nomenclature.
Nuclear bond forces: nuclide table and stability valley. Bond energy and mass defect. Specific binding energy. Interpretation of the nuclear binding force (strong interaction) as a short-range force.
Electronic structure of the atom. The electron and its fundamental properties. The concept of atomic orbitals: quantization of the angular momentum of the electron. The permitted rays of the hydrogen atom. Energy levels of the hydrogen atom. Atomic quantum numbers and their classical interpretation. Pauli's exclusion principle and Madelung's rule. Notes on the nature of elementary particles (leptons and quarks) and compound or hadrons (mesons and baryons); antimatter.
The nature of light. Introduction to wave phenomena and electromagnetic waves. Notes on refraction and diffraction. Plank formula for the energy of photons. Plank constant. Experiments and phenomena in favor of corpuscular theory: blackbody radiation (Stefan-Boltzmann law and Wien law) and photoelectric effect. Notes on the dual nature of light and matter, De Broglie wavelength.
Photons and the electromagnetic spectrum. Radiation classification: ionizing radiation (directly and indirectly) and non-ionizing radiation. Radioactivity: radioactive state and lack of nuclear stability. Radioactive decay. Decay law and decay constant. Half-life and average life. The activity (A) and its temporal trend. Relationship between activity and number of nuclei present. Unit of measurement of the activity: the Becquerel (Bq) and the Curie (Ci).
The nature of radioactive emissions. Alpha decay, beta + and beta- decay and gamma emission. Alternative decay processes: electronic capture and internal conversion.
The radioactive series. 3 species decay: the conditions of ideal equilibrium, secular equilibrium and transient equilibrium. The example of the production of 99mTc. Notes on the characteristics of radioactive sources.
Radiation-matter interaction processes: Atomic excitation and de-excitation, ionization. Fluorescence radiation emission, Auger effect. Interaction between charged particles and material. The electron, proton and alpha particle cases. The braking power. Range of charged particles and graph of braking power as a function of the thickness crossed (Bragg curve) and energy.
Photon-matter interaction processes. The photoelectric effect, the Compton effect and the production of pairs. Notes on the concept of cross section and dependencies on Z and E. Attenuation and absorption of photons. Exponential attenuation law, linear attenuation coefficient and emivalent thickness. Mass attenuation coefficient. Trends in the mass attenuation coefficient for the three main interaction phenomena. Examples in the case of soft tissues and the atomic number.
Radiographic projections:
History of Radiology and Profession;
The X-ray tube and traditional radiology equipment;
Radiation protection devices in conventional radiology;
The geometric factors that determine the formation of the image;
Fire, object, distance. Fundamental principles for the formation of an image; shade and penumbra.
Plans, positions, projections. Definition of the geometric parameters that determine the formation of a radiological image.
Evaluation of the use of the X-ray tube and relative choice of the physical parameters in conventional radiology, evaluation on the use of filters and grids.
Digital imaging and image formation: DR and CR systems;
The radiological study of the skull and paranasal sinuses
Plans and landmarks of the skull
The radiological study of the skull in conventional radiology: choice of equipment for physical parameters, accessories and films.Protocols for the radiological study of the spine: indications and radiological approach in the collaborating patient and in the traumatized patient.
Standard and complementary projections for the study of the different segments of the vertebral column both in clino and in orthostatism.
Correctness criteria and structures highlighted in the various projections
The radiological study of the pelvis;
The radiological study of the lower limbs;
The radiological study of the upper limbs;
The radiological study of the shoulder girdle, small and large joints;
The radiological study of the rib cage (ribs, sternum, clavicle):
Imaging techniques with MDC: urinary and digestive systems traditional radiology study methods (preparation of the patient-m.d.c.-methodology-projections);
Fluoroscopy: methods and equipment;
Angiography: methods and equipment.
Anatomia radiologica:
Fisica radiologica:
Proiezioni radiografiche:
Rasdiological Anatomy:
Radiological Physics:
radiographic projections:
Esame orale
Oral exam