Modules | Area | Type | Hours | Teacher(s) | |
SMALL AREA METHODS FOR THE ANALYSIS OF MULTIDIMENSIONAL POVERTY DATA AND SEMINARS | SECS-S/01 | LEZIONI | 63 |
|
Il corso offre una revisione dei principali metodi di stima per piccole aree ed insegna come applicarli a europea per avere un monitoraggio locale degli obiettivi di sviluppo sostenibile. Il ocrso inoltre insegna come stimare gli indicatori di deprivazione e disuguaglianza, concentrandosi anche sull'aggregazione di indicatori multidimensionali e sulla concettualizzazione di definire e misurare la povertà nell'ambito del capability approach.
Il corso sarà strutturato nelle seguenti parti
1) Analisi dei dati raccolti per la stima e la verifica del fenomeno in esame; definizione di domini pianificati e non pianificati.
2) Stime dirette e indirette per domini non pianificati; Codici R per l'applicazione degli stimatori SAE (librerie progetti EURAREA e SAMPLE)
3) la qualità delle stime SAE e loro utilizzo nel sistema statistico europeo.
Al termine del modulo lo studente sarà in grado di occuparsi di stima di piccole aree sia a livello teorico che empirico e di applicare metodi di aggregazione degli indicatori tratti dai dati dell'indagine europea. Gli studenti apprenderanno i metodi fondamentali di stima per piccole aree e quali potrebbero essere i problemi che sorgono nella loro applicazione e nella definizione della loro qualità statistica.
The course offers a review of the main Small Area Estimation Methods and teach how to apply them to European survey data to have a local monitoring of the Sustainable Development Goals and to estimate deprivation and inequality indicators, focusing also in aggregating Multidimensional Indicators and on conceptualizing, defining and measuring poverty under the capability approach. The course will be structured in the following parts
1) Analysis of the collected data for estimation and testing for the phenomenon under study; definition of planned and unplanned domains.
2) Direct and indirect estimates for unplanned domains; R codes for the application of the SAE estimators (EURAREA and SAMPLE project libraries)
3) quality issues in SAE and usage of SAE in European Statistical System.
At the end of the module student will be able to deal with small area estimation both at the theoretical and empirical level and to apply aggregation methods to indicators from the European survey data.
Students will learn the fundamental small area methods and what might be the problems that arise in the application of them and in the definition of their statistical quality.
Le conoscenze saranno accertate tramite
- valutazione del test individuale previsto all'inizio di ogni sessione di esame
- incontri di preparazione e discussione tra il docente ed i gruppi di studenti sul lavoro individuale o di gruppo preparato nel Laboratorio R
The knowledge will be assessed by
- meetings of the students to discuss the group work of the R Lab with the professor and the teaching staff
- evaluation of the individual written test at the beginning of each exam session
Lo studente sarà capace di
- ricercare e nalizzare le principali fonti di dati (indagini campionarie e Censimenti) sulla povertà e le condizioni di vita in Europa
- leggere e applicare i codici R per la stima SAE
- presentare i risultati dell'applicazione dei modelli SAE ai dati europei
The student will be able to
- search and analysse the official data sources (surveys, Censuses) on poverty and living conditions in Europe
- read and apply the R codes to perform SAE
- present the results of the application of the SAE model to European data
- durante il Laboratorio R si svolgeranno piccoli progetti per comprendere il funzionamento dei codici R per il SAE
- saranno svolte attività pratiche per la ricerca di fonti consultando il Web ed i principali databases Eurostat
- lo studente sarà chiamato a relazionare sui progetti R e le attività pratiche di ricerca
- during the session of the R Lab small individual projects will allow to understand how to run the R SAE codes
- there will be small practical sessions to search and consult the data sources (search tools and methods for a given research topic, searching the Web and the main Eurostat databases)
- the student will present the results of the small projects and of the searching og the data sources
- lo studente potrà sviluppare capacità di ragionamento critico e sensibilità verso le problematiche di conoscenza dei dati locali sulle condizioni di vita in EU
- lo studente potrà sviluppare la capacità di lavorare in gruppo e di gestire team di lavoro anche come leader
- the student can develop awareness of the problems of local data on poverty and living conditions in EU
- the student can develop the ability to work in group and to manage the responsibilities as a group leader
- durante le attività di Laboratorio e di ricerca dati gli studenti presenteranno short reports sui risultati ottenuti
- la definizione delle responsabilità, i criteri di divisione del lavoro e l'organizzazione dei progetti di gruppo saranno monitotate e valutate dal docente
- during the activities of R Lab and data searching the students will have to present short reports on the obtained results
- during the group activities the modalities of the definition of responsibilities, sharing of the workload and management of the project steps will be monitored and evaluated
- conoscenze di statistica descrittiva ed inferenziale
- capacità informatiche per elaborazione dati
- conoscenza dei modelli statistici di regressione e di modelli lineari generalizzati
- descriptive statistics and inference
- data processing abilities
- regression models, generalized linear models
Il corso è in lingua Inglese e prevede:
- lezioni frontali con ausilio di slides
- esercitazioni in Laboratorio che si svolgono formando gruppi ed usando i PC personali degli studenti
- strumenti di supporto: seminari di esperti, siti web
- materiali scaricabili dalla piattaforma Moodle di economia e da http://sampieuchair.ec.unipi.it/
- interazione con il docente tramite ricevimenti, posta elettronica, sito elearning
The course is in English and it provides
- lectures with slides
- group activities in R Lab using personal Laptop of the students
- seminars of experts, web sites
- downloadable materials from Moodle platform of the Dept of Economics and Management and on Small Area methods for Multidimensional Poverty and living conditions Indicators in EU/SAMPIEU (unipi.it)
- interactions with the Professors through meetings, email, elearning site
Il corso presenta i principali metodi statistici per ottenere indicatori di povertà e di condizioni di vita a livello locale.
I contenuti dell'insegnamento sono: definizione di indicatori di povertà e condizioni di vita ( per esempio Laeken Indicators of Poverty e/o Indicatori multidimensionali di povertà), metodi di stima basati su disegno e su modello quando i dati di indagine non garantiscono sufficiente accuratezza (valori accettabili del Coefficiente di Variazione) nel dominio di studio a causa della ridotta dimensione del campione selezionato.
Il corso (9ECTS) è diviso in tre parti
1) Analisi dei dati raccolti per la cnoscenza del fenomeno studiato; definizione dei domini pianificati e non pianificati e del livello locale di analisi.
2) Stima diretta ed indiretta per domini non pianificati; codici R per l'applicazione degli stimatori SAE (EURAREA and SAMPLE project libraries) 3) qualità delle stime SAE e uso del SAE nel sistema statistico europeo
3) Qualità delle stime SAE e loro uso nel Sistema Statistico Europeo
Seminari:
The course introduces a range of quantitative tools commonly used to provide indicators of poverty and living conditions at local level.
It covers the definition of poverty and living conditions indicators (see Laeken Indicators of Poverty and/or Multidimensional Indicators of poverty, as an example), design based and model based estimates using survey data with an emphasis on the ways in which they are applied to obtain local data and indicators when the domains of study are not planned in current surveys and there is the need to have statistically sound estimates (with acceptable Coefficient of variation).
The course (9ECTS) will be structured in the following parts
1) Analysis of the collected data for estimation and testing for the phenomenon under study; definition of planned and unplanned domains.
2) Direct and indirect estimates for unplanned domains; R codes for the application of the SAE estimators (EURAREA and SAMPLE project libraries) 3) quality issues in SAE and usage of SAE in European and USA Statistical System.
3) quality issues in SAE and usage of SAE in European Statistical System
Seminars and intensive lectures
Materiale sulla definizione degli indicatori:
Materiale sulal stima degli indicatori
http://gsars.org/en/spatial-disaggregation-and-small-area-estimation-methods-for-agricultural-surveys-solutions-and-perspectives/ (last access 18-2-17)
Materiali saranno forniti dai docenti durante il corso.
Reference material on the definition of indicators
Reference material on the estimation of indicators
http://gsars.org/en/spatial-disaggregation-and-small-area-estimation-methods-for-agricultural-surveys-solutions-and-perspectives/ (last access 18-2-17)
Readings will be provided by the lecturers during the course.
Non sono previste variazioni di programma, modalità di esame, bibliografia per gli studenti non frequentanti
No variations of program, assessment methods, bibliography for non-attending students
L'esame è composto da una prova individuale e da un seminario.
The exam is an individual assessment and a seminar.
Students can take the exam for the entire course, “Small Area methods for the analysis of multidimensional poverty data and seminars” (9 ECTS), or for the courses “Analysis of Survey Data and Small Area Estimation” (6 ECTS) with reduced program.
Questo corso fa parte di una cattedra Jean Monnet.
La frequenza alle lezioni è fortemente consigliata.
This course is part of a Jean Monnet Chair.
Attendance to the lectures is strongly suggested.
Wide reading and deep thinking are strongly recommended.