View syllabus
MULTIMESSENGER PHYSICS LABORATORY
MASSIMILIANO RAZZANO
Academic year2020/21
CoursePHYSICS
Code327BB
Credits9
PeriodSemester 2
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
MULTIMESSENGER PHYSICS LABORATORYFIS/01LEZIONI54
MASSIMILIANO RAZZANO unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Dopo aver superato l’esame lo studente avrà acquisito una solida conoscenza delle metodologie sperimentali legate all’osservazione di radiazione elettromagnetica, onde gravitazionali e raggi cosmici, e delle tecniche e principali software di analisi dati utilizzati nell’astrofisica multimessaggera. Durante il corso gli studenti impareranno a sviluppare programmi di analisi articolati utilizzando il linguaggio di programmazione Python anche sfruttando la programmazione orientata agli oggetti. Nella parte finale saranno anche presentati cenni di tecniche di analisi avanzate basate su machine e deep learning.

Knowledge

The student who successfully completes the course will have acquired a solid knowledge of the experimental methodologies related to the observation of electromagnetic radiation, gravitational waves and cosmic rays, as well as the main techniques and analysis softwares used in multimessenger astrophysics. During the course the students will learn to develop analysis programs using Python programming languages also using object-oriented programming. During the last part an overview of the main machine learning approaches will be presented.

Modalità di verifica delle conoscenze

Lo studente deve mostrare di saper leggere e manipolare i dati raccolti da telescopi e strumenti operanti alle diverse lunghezze d’onda (in particolare onde radio, raggi X e raggi gamma), e da rivelatori di onde gravitazionali. Durante il corso saranno proposti progetti di analisi dati in cui gli studenti dovranno sviluppare opportuni programmi e algoritmi per estrarre i principali parametri delle sorgenti astrofisiche da analizzare, e preparare una relazione sui risultati ottenuti.

Metodi

- Progetti di analisi dati e relative relazioni di laboratorio

- Esame finale orale

Assessment criteria of knowledge

The student will demonstrate the ability to read and manipulate the data taken with telescopes and instruments operating at various wavelengths (in particular in the radio, X and gamma-ray band), with gravitational-wave detectors. During the course there will be a series of data analysis projects where students will develop custom programs and algorithms in order to extract the main parameters of the astrophysical source under analysis and prepare a report on the results.

Methods:

- Data analysis projects and related laboratory reports

- Final written exam

Capacità

Capacità di leggere e dati osservativi, anche ritrovandoli da archivi online. Utilizzare il linguaggio di programmazione Python per sviluppare strumenti di analisi dati relativi a osservazione di radiazione elettromagnetica, gravitazionale e di radiazione cosmica. Utilizzare i principali software di riduzioni dati usati nel dominio dei raggi X, raggi gamma, onde gravitazionali, anche utilizzando le principali librerie di analisi dati Python. Costruire un software di analisi dati per combinare dati osservativi provenienti da strumenti diversi nel contesto multimessaggero.

Skills

Read observational data, also retrieving it from online archives. Using Python language to develop analysis tools for electromagnetic an gravitational radiation, as well as cosmic rays. Using main analysis software to reduce data in X, gamma rays, gravitational waves, also using main Python analysis libraries. Build a analysis software that combine observational data coming from different instruments in the multimessenger context.

Modalità di verifica delle capacità

L'abilità nell'uso degli strumenti e metodi più adeguati per studiare una sorgente cosmica viene verificata durante i progetti di analisi dati durante l’anno e durante la prova orale finale. Alcuni progetti saranno sviluppati a gruppi e altri individualmente.

Assessment criteria of skills

The skill in using the most adeguate analysis tools and methods for a certain cosmic source will be assessed through the data analysis projects during the year and in the final oral exam. Some projects will be carried on in groups and others individually.

Comportamenti

Lo studente acquisisce la terminologia corretta, sa utilizzare i metodi e i software di analisi più appropriati e, ove necessario, sa sviluppare semplici programmi di analisi in Python.

Behaviors

The student acquires the correct terminology, uses properly methods and analysis tools and if needed, is able to develop analysis programs with Python.

Modalità di verifica dei comportamenti

L'uso della terminologia corretta e il corretto ragionamento sono valutati nelle relazioni di laboratorio e durante la prova orale.

Assessment criteria of behaviors

Correct terminology and reasoning are assessed in the laboratory reports and during the oral exam.

Prerequisiti (conoscenze iniziali)

Conoscenze di base di relatività ed elettromagnetismo, di processi di interazione radiazione-materia. Conoscenza delle tecniche di analisi statistica di base. Conoscenza delle basi del linguaggio Python.

Prerequisites

Basic knowledge of relativity and electromagnetism. Basics of radiation-matter interaction processes. Knowledge of basic statistical analysis. Knowledge of the basics of Python language.

Programma (contenuti dell'insegnamento)

INTRODUZIONE

- Richiami su grandezze fondamentali in astrofisica. Introduzione all’astrofisica multifrequenza. Cataloghi, formato dati e risorse online per astrofisica multifrequenza. Introduzione all’astrofisica multimessaggera, motivazione e principali risultati. Programmazione a oggetti con Python e librerie per astronomia

- Progetto di analisi dati basata su programmazione a oggetti per la manipolazione dei dati

 

RADIAZIONE ELETTROMAGNETICA DI BASSA ENERGIA - ONDE RADIO

- Processi di emissione di radiazione nel dominio delle onde radio. Equazioni del trasporto radiativo, spettro di corpo nero. Emissioni non termiche. Principali sorgenti astrofisiche. Elementi di rivelazione delle onde radio con radiotelescopi.

- Progetto di analisi dati su osservazioni radio VHF e sulla riga a 21 cm 

 

 

RADIAZIONE ELETTROMAGNETICA DI ALTA ENERGIA

- Processi di emissione di radiazione X e gamma. Meccanismi di interazione radiazione materia ad alte energie e tecniche di rivelazione nell’astrofisica X e gamma. Polarimetria X. Principali rivelatori di raggi X e gamma: passato, presente e futuro. Principali sorgenti astrofisiche alle alte energie.

- Progetto di analisi dati su osservazione di raggi gamma di una sorgente transiente. Il caso dei Gamma Ray Burst

- Progetto di analisi dati su osservazione gamma di una sorgente periodica. Il caso delle pulsar

  

ONDE GRAVITAZIONALI

Cenni di relatività generale e introduzione alle onde gravitazionali. Principali sorgenti di onde gravitazionali. Sorgenti transienti e continue a varie lunghezze d’onda. Rivelatori di onde gravitazionali. Dalle barre risonanti agli interferometri. Rivelatori interferometrici. Il problema del rumore. Scoperta delle onde gravitazionali e primi risultati. Formato dati e introduzione all’analisi dati. Analisi di segnale. Tecniche di rivelazione: Matched filtering e excess power. Stima dei parametri.

- Progetto di analisi dati di coalescenza di un sistema binario compatto.

Syllabus

INTRODUCTION

- Basic quantities in astrophysics. Introduction to the multifrequency astrophysics. Catalogs, data format and online resource for multifrequency astrophysics. Introdution to the multimessenger astrophysics, motivation and main results. Object-oriented programming in Python and astronomy libraries.

- Data analsys project on object oriented programming for data manipulation.

 

RADIO EMISSION FROM COSMIC SOURCES

- Emission processes in radio domain. Equation of radiative transfer. Black body spectrum, non thermal emission. Main astrophysical sources. Radio waves detection and radiotelescopes.

- Data analysis project on radio observations at VHF and 21 cm

 

HIGH-ENERGY ELECTROMAGNETIC RADIATION

- X and gamma ray emission processes. Interaction radiation-matter at high energies and X-ray and gamma-ray detection methods. X-ray polarimetry. Main X and gamma ray detectors: past,present and future. Main high-energy astrophysical sources.

- Data analysis project on gamma ray analysis of a transient source. The case of Gamma Ray Burst.

- Data analysis project on gamma rays from a periodic source. The case of pulsars

 

GRAVITATIONAL WAVES

Introdution to general relativity and to gravitational waves. Main gravitational wave sources at various wavelengths: transient and periodic sources. Detectors, from resonant bars to interferometers. Interferometers. The problem of noise. Detection of gravitational waves and first results. Data format and introduction to data analysis. Signal analysis. Detection techniques: matched filtering and excess power. Parameter estimation.

- Data analysis project on compact binary system coalescence.

Bibliografia e materiale didattico

Libri di testo universitari di astrofisica delle alte energie e di fisica delle onde gravitazionali (parti relative ai metodi sperimentali e all’analisi dei dati). In particolare:

- Longair, M. “High Energy Astrophysics”, Cambridge Ed.

- Maggiore, M. “Gravitational Waves, Vol. 1”, Oxford Ed.

- Creighton, D.E. & Anderson, W. G., “Gravitational-Wave Physics and Astronomy”, Wiley Ed.

- Smith, "Observational Astrophysics"

- Manuali e risorse online sulla programmazione in Python e sull’uso dei software di riduzione dati impiegati nel corso.

Bibliography

University textbooks of high-energy astrophysics and gravitational wave physics (chapters on data analysis). In particular:

- Longair, M. “High Energy Astrophysics”, Cambridge Ed.

- Maggiore, M. “Gravitational Waves, Vol. 1”, Oxford Ed.

- Creighton, D.E. & Anderson, W. G., “Gravitational-Wave Physics and Astronomy”, Wiley Ed.

- Smith, "Observational Astrophysics"

- Manuals and online resources on Python programming and on the software of data reduction used during the course.

Modalità d'esame

L'esame consiste in una prova orale in cui vengono descussi i progetti di analisi dati realizzati durante il corso. Le relazioni sui singoli progetti sono il punto di partenza per l’approfondimento delle tematiche sperimentali trattate nel corso. In base alle restrizioni previste in conseguenza della situazione di pandemia agli studenti sarà fornita una piattaforma dove poter sviluppare i progetti di analisi proposti.

Assessment methods

Assessment is done through an oral exam, where the data analysis projects carried on during the course are discussed. The laboratory reports on the single projects are the starting point for a broader discussion on the topics of the course. As a consequence of the restrictions related to the pandemic we will provide to the students a platform for the online development of the projects.

Updated: 22/12/2020 11:36