View syllabus
ARTIFICIAL INTELLIGENCE FOR CYBERSECURITY
FRANCESCO MARCELLONI
Academic year2021/22
CourseCYBERSECURITY
Code931II
Credits6
PeriodSemester 1
LanguageEnglish

ModulesAreaTypeHoursTeacher(s)
ARTIFICIAL INTELLIGENCE FOR CYBERSECURITYING-INF/05LEZIONI48
GIANLUCA DINI unimap
FRANCESCO MARCELLONI unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Gli studenti che completeranno con successo l'insegnamento avranno una conoscenza di base delle principali tecniche di pre-processazione dei dati, classificazione, predizione, clustering, outlier detection e estrazione dei pattern frequenti. Questa conoscenza permetterà loro di affrontare problemi di cybersecurity (Spam Detection, Fraudulent Transaction Detection, Anomaly Detection, Malware Analysis, Network Traffic Analysis) con tecniche di artificial intelligence e di identificare la tecnica più adatta per risolverli.

Knowledge

The students who successfully complete the course will have a basic knowledge of the main techniques used in data preprocessing, frequent pattern mining, classification, prediction, clustering and outlier detection. This knowledge will allow them to tackle cybersecurity problems (Spam Detection, Fraudulent Transaction Detection, Anomaly Detection, Malware Analysis, Network Traffic Analysis) by using artificial intelligence techniques and to identify the most suitable technique for solving them.

Modalità di verifica delle conoscenze

Durante la verifica delle conoscenze, gli studenti devono dimostrare di aver appreso le diverse tecniche insegnate durante lo svolgimento del corso e devono essere capaci di identificare la soluzione più adatta per problemi specifici di cybersecurity. 

I metodi sono:

  • esame orale
  • report e presentazione di un progetto

Ulteriori informazioni: allo studente è richiesto di sviluppare un progetto in cui vengono utilizzate tecniche di artificial inteligence per risolvere problemi di cybersecurity. I risultati del progetto vengono discussi durante una presentazione.

Assessment criteria of knowledge

During the oral exam the student must be able to demonstrate his/her knowledge of the course material and be able to identify the most suitable solutions for specific cybersecurity problems.

Methods:

  • Final oral exam
  • Written report and presentation of the project

Further information:
The student is requested to develop an application employing some artificial intelligence technique to solve cybersecurity problems. The results of the project are described in a report and discussed during the presentation of the project. 

Capacità

Al termine del corso, 

  • lo studente saprà affrontare i più comuni problemi di cybersecurity, trovando le soluzioni basate sull'intelligenza artificiale più idonee per risolverli
  • lo studente saprà valutare e confrontare più soluzioni e scegliere la più adatta
Skills

At the end of the course,

  • the student will be able to tackle the most common problems in cybersecurity, searching for the most suitable solution based on artificial intelligence
  • the student will be able to evaluate and compare several possible solutions and to select the most effective
Modalità di verifica delle capacità

Lo studente dovrà preparare e presentare una relazione scritta che riporti i risultati dell'attività di progetto

Assessment criteria of skills

The student will have to prepare and present a report, which describes the development of the project and the obtained results

Comportamenti

Lo studente potrà acquisire un metodo per affrontare problemi di cybersecurity con tecniche di intelligenza artificiale e per selezionare le migliori soluzioni da adottare

Behaviors

The student will acquire a method to deal with cybersecurity problems using Artificial Intelligence techniques and to select the most effective solution to be adopted

Modalità di verifica dei comportamenti

Durante le sessioni di laboratorio saranno valutati il grado di accuratezza e precisione delle attività svolte dallo studente

Durante lo sviluppo del progetto saranno verificate le modalità di gestione e organizzazione delle fasi progettuali

Assessment criteria of behaviors

During the laboratory sessions the degree of accuracy and precision of the activities carried out by the student will be evaluated


During the development of the project, the procedures for managing and organizing the project phases will be verified

Prerequisiti (conoscenze iniziali)

Conoscenze di base di matematica

Conoscenze di linguaggi di programmazione 

Prerequisites

Basic knowledge of mathematics

Knowledge of programming languages

Indicazioni metodologiche

Le lezioni verranno svolte frontalmente con l'ausilio di lucidi

Le esercitazioni verranno svolte in laboratorio con l'ausilio di lucidi

Durante il corso, verrà sviluppato dallo studente un progetto che costituirà parte della valutazione finale

 

L'intero corso è tenuto in Inglese

Teaching methods

Delivery: face to face

Learning activities:

  • attending lectures
  • individual study
  • Laboratory work
  • Practical

Attendance: Advised

Teaching methods:

  • Lectures
  • Seminar
  • Task-based learning/problem-based learning/inquiry-based learning
  • laboratory
  • project work
Programma (contenuti dell'insegnamento)

Data Preprocessing: data cleaning, integration, reduction, transformation and discretization.

Classification: basic concepts, decision tree induction, Bayes classification methods, lazy learners, techniques for improving accuracy, model evaluation and selection.

Clustering: basic concepts, partitioning methods, hierarchical methods, density-based methods, model evaluation and selection.

Outlier detection: statistical, proximity-based, clustering-based and classification-based approaches.

Frequent pattern mining: basic concepts, A-priori algorithm, pattern evaluation methods.

Examples of application of the artificial intelligence techniques described during the lectures to typical cybersecurity problems such as spam detection, fraudulent transaction detection, anomaly detection, malware analysis, network traffic analysis will be also discussed.

Syllabus

Data Preprocessing: data cleaning, integration, reduction, transformation and discretization.

Classification: basic concepts, decision tree induction, Bayes classification methods, lazy learners, techniques for improving accuracy, model evaluation and selection.

Clustering: basic concepts, partitioning methods, hierarchical methods, density-based methods, model evaluation and selection.

Outlier detection: statistical, proximity-based, clustering-based and classification-based approaches.

Frequent pattern mining: basic concepts, A-priori algorithm, pattern evaluation methods.

Examples of application of the artificial intelligence techniques described during the lectures to typical cybersecurity problems such as spam detection, fraudulent transaction detection, anomaly detection, malware analysis, network traffic analysis will be also discussed.

Bibliografia e materiale didattico

J Han and M Kamber Data Mining Concepts and Techniques Morgan
Kaufmann, 3 rd ed 2011

C Chio and D Freeman, Machine Learning and Security Protecting Systems
with Data and Algorithms, O’Really Media, Inc 2018

A Parisi Hands on Artificial Intelligence for Cybersecurity, Packt Publishing,
2019

Papers on the different algorithms described during the course

Slides

Bibliography

J Han and M Kamber Data Mining Concepts and Techniques Morgan
Kaufmann, 3 rd ed 2011

C Chio and D Freeman, Machine Learning and Security Protecting Systems
with Data and Algorithms, O’Really Media, Inc 2018

A Parisi Hands on Artificial Intelligence for Cybersecurity, Packt Publishing,
2019

Papers on the different algorithms described during the course

Slides

Modalità d'esame

L'esame è composto dalla discussione del progetto e una prova orale.

La discussione del progetto viene tipicamente tenuta qualche giorno prima dell'esame orale. Il candidato deve presentare come il progetto è stato sviluppato, motivare le sue scelte progettuali e discutere i risultati ottenuti. Il progetto viene valutato positivamente se il candidato mostra di aver seguito un approccio corretto e di aver valutato in modo critico le possibili soluzioni, scegliendo la più appropriata 

La prova orale consiste in un colloquio tra il candidato e il docente sugli argomenti trattati a lezione.
La prova orale è superata  se il candidato mostra padronanza degli argomenti trattati, si esprime in modo chiaro e con terminologia corretta, mostra capacità di analisi e sintesi.

Assessment methods

The assessment method consists of a presentation of the project and an oral exam.

The presentation of the project will be hold some days before the oral exam. The candidate has to present how the project has been developed, to justify the design choices and critically discuss the obtained results. The project is positively evaluated if the candidate shows to have followed a correct approach and to have critically evaluated the possible solutions, choosing the most appropriate

The oral exam consists of a conversation between the candidate and the teacher on the topics introduced during the lectures.
The oral exam is over if the candidate shows mastery of the topics covered, is expressed clearly and with correct terminology, shows the ability of analysis and synthesis.

Stage e tirocini

 

 

Updated: 21/11/2021 18:12