Scheda programma d'esame
QUANTUM CHEMISTRY AND MOLECULAR MODELLING
MAURIZIO PERSICO
Academic year2016/17
CourseCHEMISTRY
Code190CC
Credits6
PeriodSemester 1
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
CHIMICA QUANTISTICA E MODELLISTICA MOLECOLARECHIM/02LEZIONI48
MAURIZIO PERSICO unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Al termine del corso lo studente avrà acquisito conoscenze su teoria e metodi di calcolo per la struttura e proprietà di sistemi molecolari, da semplici campi di forze a metodi di chimica quantistica.

Knowledge

After attending the course the student will have acquired knowledge about theory and computational methods for the structure and properties of molecular systems, from simple force fields to quantum chemistry.

Modalità di verifica delle conoscenze

L’accertamento delle conoscenze acquisite avverrà tramite l’esame finale.

Assessment criteria of knowledge

The acquired knowledge will be assessed by the final exam.

Capacità

Al termine del corso lo studente sarà in grado di

- discutere e approfondire autonomamente gli argomenti del corso;

- valutare l’applicabilità dei diversi metodi di calcolo oggetto del corso a problemi chimici specifici;

- progettare calcoli di struttura e altre proprietà molecolari.

Modalità di verifica delle capacità

L’accertamento delle capacità acquisite avverrà tramite l’esame finale.

Comportamenti

Lo studente potrà abituarsi a considerare gli strumenti computazionali come un importante complemento dell’attività sperimentale.

Modalità di verifica dei comportamenti

L’interesse degli studenti verso le tematiche del corso è stimolato e in minor misura verificato da domande e proposte di discussione del docente.

Prerequisiti (conoscenze iniziali)

Conoscenze di base di matematica (analisi e algebra lineare), fisica classica e quantistica, chimica fisica.

Indicazioni metodologiche

L’insegnamento consiste di lezioni frontali, con raro uso di tabelle o figure proiettate. Sono fornite note delle lezioni del docente che coprono solo alcuni argomenti specifici.

Programma (contenuti dell'insegnamento)

Separazione dei moti in meccanica quantistica. Approssimazione di Born-Oppenheimer. Superfici di energia potenziale e loro esplorazione. Sistemi di coordinate. Algoritmi per la ricerca di estremi nelle superfici di energia potenziale. Stati di transizione. Modi normali e stati vibrazionali.

Teorema variazionale. Espansione in basi ortonormali. Trattamento variazionale di stati eccitati.

Teoria delle perturbazioni. Interazioni intermolecolari: multipoli e interazioni elettrostatiche; interazioni induttive e polarizzabilità, interazioni di dispersione.

Campi di forze molecolari (Molecular Mechanics): termini di stretch, bend, torsione, repulsione-dispersione ed elettrostatici. Termochimica. Funzioni d'onda elettroniche. Hamiltoniano elettrostatico. Principio di antisimmetria. Determinanti di Slater. Orbitali e spin-orbitali. Autostati di spin. Correlazione elettronica: buca di Fermi e buca di Coulomb.

Metodo restricted Hartree-Fock (guscio chiuso). Espressione dell'energia per un singolo determinante. Orbitali canonici. Equazioni di Roothaan. Matrice densità e algoritmo iterativo SCF. Significato degli orbitali molecolari. Energie di ionizzazione (Koopmans) ed affinità elettroniche. Energie di singola eccitazione, differenza tripletto-singoletto. Teorema di Brillouin. Restricted HF per gusci aperti. Unrestricted HF. Calcolo degli integrali e altri aspetti tecnici, SCF diretto.

Basi di funzioni atomiche; Slater, gaussiane primitive e contratte. Tipi di basi e loro ottimizzazione. Funzioni diffuse e di polarizzazione. Errore di sovrapposizione di basi. Potenziali efficaci di core.

Energia di correlazione elettronica. Size-extensivity e size-consistency. Interazione di configurazioni (CI) col metodo variazionale. Confronto delle descrizioni MO, VB e CI di un legame chimico. Correlazione statica e dinamica. Importanza dellla base atomica. Full CI. Troncamento dello spazio configurazionale: classi di eccitazione, orbitali attivi, complete active space (CAS), selezione dei determinanti. Multi Configurational SCF, CAS-CI e CAS-SCF, state average MC-SCF. Interazione di configurazioni con metodi perturbativi. Metodi Møller-Plesset.

Teoremi fondamentali della density functional theory (DFT). Hohenberg-Kohn e Levy. Energia elettronica come funzionale della densità. Metodo di Kohn-Sham. Potenziale di scambio e correlazione. Derivazione teorica e determinazione numerica dei potenziali di scambio e correlazione. Vantaggi e limitazioni dei metodi DFT.

Calcolo di osservabili molecolari e di descrittori della funzione d'onda elettronica e della distribuzione di carica. Cariche di Mulliken. Cariche atomiche derivate dal potenziale elettrostatico. Analisi della densità di carica secondo Bader ("atoms in molecules").

Bibliografia e materiale didattico

I. N. Levine, Quantum Chemistry

F. Jensen, Introduction to Computational Chemistry

Note delle lezioni del docente.

Modalità d'esame

L’esame consiste in una prova orale che dura orientativamente un’ora e prende solitamente spunto da un semplice problema di determinazione computazionale di proprietà molecolari.

Updated: 10/07/2017 10:53