Scheda programma d'esame
Nanostructured Materials
LUCIA SORBA
Academic year2021/22
CourseMATERIALS AND NANOTECHNOLOGY
Code312BB
Credits9
PeriodSemester 1 & 2
LanguageEnglish

ModulesAreaTypeHoursTeacher(s)
NANOSTRUCTURED MATERIALSFIS/03LEZIONI72
STEFAN HEUN unimap
LUCIA SORBA unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Tecniche di crescita (volume,epitassiali:CVD, MOCVD, MBE, CBE)

Tecniche di fabbricazione di nanostrutture: top-down  e bottom-up

Proprietà morfologiche di nanostrutture: (AFM, SEM, STM)

Proprietà elettroniche, chimiche e composizionali di nanostrutture (fotoemissione, PEEM, XPEEM)

Proprietà struturali di nanostrutture (TEM, XRD)

Proprietà ottiche di nanostrutture (Raman, PL, PLE)

Materiali (2DEG, grafene, bP, NW, QD)

Esempi (effetto Hall quantistico, immagazzinamento di idrogeno)

Knowledge

Growth techniques (bulk, epitaxial: CVD, MOCVD, MBE, CBE)
Fabrication techniques of nanostructures: top-down and bottom-up
Morphological properties of nanostructures (AFM, SEM, STM)
Electronic, chemical and compositional properties of nanostructures (Photoemission, PEEM, XPEEM)
Structural properties of nanostructures (TEM, XRD)
Optical properties of nanostructures (Raman, PL, PLE)
Materials (2DEG, Graphene, bP, NW, QD)
Examples (quantum Hall effect, hydrogen storage)

Modalità di verifica delle conoscenze

Esame orale con preparazione seminario su un articolo di riivista

Assessment criteria of knowledge

Oral exam with a seminar based on selected paper

Capacità

Gli studenti acquisiranno conoscenze dettagliate sulle proprietà strutturali,elettroniche e ottiche di naostrutture e sulle tecniche utilizzate per la misura di queste proprietà. Gli studenti saranno in grado di comprendere le  principali fenomenologie sperimentali osservate e di disegnare nuove nanostrutture aventi  proprietà elettroniche desiderate.

Skills

Students will gain a detailed knowledge of the structural, electronic and optical properties of nanostructures. They will learn about the techniques to measure these properties. They will be able to understand the main experimental phenomenologies observed and design novel nanostructures with desired electronic properties.

Modalità di verifica delle capacità

Esame orale

Assessment criteria of skills

Oral exam

Comportamenti

N/A

Behaviors

N/A

Modalità di verifica dei comportamenti

N/A

Assessment criteria of behaviors

N/A

Prerequisiti (conoscenze iniziali)

fisica dello stato solido e fisica dei semiconduttori

Prerequisites

Solid State Physics, Semiconductor Physics

Corequisiti

N/A

Co-requisites

N/A

Prerequisiti per studi successivi

N/A

Prerequisites for further study

N/A

Indicazioni metodologiche

L'insegnamento si svolgerà soprattutto con le lezioni frontali. La frequenza non è obbigatoria, ma raccomandata. Alla fine del corso sarà organizzata una visita dei laboratori di ricercha presso il Laboratorio NEST.

Teaching methods

Teaching will mainly consist of frontal lectures. Attendance is not mandatory, but advised. At the end of the course we will organize a visit to the research labs at Laboratorio NEST.

Programma (contenuti dell'insegnamento)

›A) Materials: Basics

›A1) General Properties of Semiconductors

›A2) Growth Mechanisms

›A3) Growth Techniques: MBE, MOCVD, CBE

›A4) Defects in Semiconductors

›A5) Fabrication of Semiconductor Nanostructures

›B) Characterization Techniques

›B1) Microscopy

›B2) X-ray Diffraction

›B3a) X-ray Photoelectron Spectroscopy

›B3b) XPS – Scanning Photoemission Microscopy

›B4) X-ray Photoemission Electron Microscopy

›B5) Scanning Probe Microscopy

›B6) Optical Spectroscopies

›B7) Transport

›C) Low-dimensional Materials: 2D, 1D, 0D

›C1) 2-dimensional Electron Systems

›C2) Quantum Hall Effect

›C3) Graphene I

›C4) Graphene II

›C5) Phosphorene

›C6) Semiconductor Nanowires

›C7) Quantum Dots

›D) Examples

›D1) Hydrogen Storage

›E ) Lab Training

Syllabus

›A) Materials: Basics

›A1) General Properties of Semiconductors

›A2) Growth Mechanisms

›A3) Growth Techniques: MBE, MOCVD, CBE

›A4) Defects in Semiconductors

›A5) Fabrication of Semiconductor Nanostructures

›B) Characterization Techniques

›B1) Microscopy

›B2) X-ray Diffraction

›B3a) X-ray Photoelectron Spectroscopy

›B3b) XPS – Scanning Photoemission Microscopy

›B4) X-ray Photoemission Electron Microscopy

›B5) Scanning Probe Microscopy

›B6) Optical Spectroscopies

›B7) Transport

›C) Low-dimensional Materials: 2D, 1D, 0D

›C1) 2-dimensional Electron Systems

›C2) Quantum Hall Effect

›C3) Graphene I

›C4) Graphene II

›C5) Phosphorene

›C6) Semiconductor Nanowires

›C7) Quantum Dots

›D) Examples

›D1) Hydrogen Storage

›E ) Lab Training

Bibliografia e materiale didattico

Jeffrey Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy, 1992
Ivan V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 2004
Yu Peter, Cardona Manuel, Fundamentals of Semiconductors: Physics and Materials Properties
Ashcroft Neil W, David Mermin N, Solid State Physics

Bibliography

Jeffrey Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy, 1992
Ivan V. Markov, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth, and Epitaxy, 2004
Yu Peter, Cardona Manuel, Fundamentals of Semiconductors: Physics and Materials Properties
Ashcroft Neil W, David Mermin N, Solid State Physics

Indicazioni per non frequentanti

N/A

Non-attending students info

N/A

Modalità d'esame

Esame orale

Assessment methods

Oral exam

Stage e tirocini

N/A

Work placement

N/A

Altri riferimenti web

N/A

Additional web pages

N/A

Note

N/A

Notes

N/A

Updated: 25/09/2021 17:44