Integrative cerebral function and image processing
Code 002MI
Credits 12
Learning outcomes
The course is divided in two modules:
Integrative cerebral functions – All cognitive and emotional functions are the by-product of the activity of anatomo-functional distributed and, at the same time, integrated networks. The didactic module entitled "Integrative cerebral functions" will address the following main topics: 1) Node and rich-clubs in the human connectome; 2) Sleep, mentation and dreaming; 3) Biological bases of consciousness; 4) Theory of mind and mirror neuron system; 4) Empathy in the emotional context; 5) Stress in the context of body and mind integration
Advanced image processing - This module will cover advanced image processing methods that can be applied to biomedical images of the brain. In particular, the methods used to study structural and functional connectivity, as well as brain metabolism, will be deeply covered. The students will be trained to process images acquired using different neuroimaging techniques, as those based on MRI, PET and NIRS. The course will also introduce the main approaches for the integration of biomedical images and electrophysiological recordings.
Integrative cerebral functions – All cognitive and emotional functions are the by-product of the activity of anatomo-functional distributed and, at the same time, integrated networks. The didactic module entitled "Integrative cerebral functions" will address the following main topics: 1) Node and rich-clubs in the human connectome; 2) Sleep, mentation and dreaming; 3) Biological bases of consciousness; 4) Theory of mind and mirror neuron system; 4) Empathy in the emotional context; 5) Stress in the context of body and mind integration
Advanced image processing - This module will cover advanced image processing methods that can be applied to biomedical images of the brain. In particular, the methods used to study structural and functional connectivity, as well as brain metabolism, will be deeply covered. The students will be trained to process images acquired using different neuroimaging techniques, as those based on MRI, PET and NIRS. The course will also introduce the main approaches for the integration of biomedical images and electrophysiological recordings.