

Sistema centralizzato di iscrizione agli esami Programma

•

Università di Pisa Controlli automatici

ANTONIO BICCHI

Anno accademico CdS Codice CFU 2017/18 INGEGNERIA DEI VEICOLI 380II 6

Moduli Settore/i Tipo Ore Docente/i
CONTROLLI AUTOMATICI IING-INF/04 LEZIONI 60 ANTONIO BICCHI

Obiettivi di apprendimento

Conoscenze

Il corso si propone di fornire agli allievi le nozioni fondamentali e gli strumenti necessari per l'analisi, la progettazione e la realizzazione di sistemi di controllo per sistemi meccanici e robotici, intesi nella loro più ampia accezione: sistemi fisici controllati da un processore digitale, dotati di capacità sensoriali e di intervento sull'ambiente, con caratteristiche di elevata autonomia e di facile interazione con l'uomo. Al termine del corso, lo studente avrà:

- · conoscenze avanzate inerenti alla modellistica ed al controllo di manipolatori robotici e di veicoli autonomi;
- conoscenze sulle tecniche e gli algoritmi di pianificazione del moto di sistemi robotici, anche inseriti in contesti di produzione integrata;
- · conoscenze sulle metodologie di modellazione, analisi e progetto di sistemi di controllo per sistemi robotici.

Il corso è diviso in due parti: meccanica dei robot e controlli automatici.

Modalità di verifica delle conoscenze

La verifica delle conoscenze avviene attraverso la applicazione delle stesse a casi di studio, i cui risultati sono presentati e discussi attraverso una relazione tecnica ed una presentazione con strumenti multimediali.

Capacità

Al termine dell'insegnamento lo studente saprà:

- · Progettare sistemi di controllo per sistemi meccanici e robotici in presenza di vincoli e di incertezze del modello
- · Analizzare le caratteristiche e le proprietà strutturali della dinamica di sistemi meccanici e robotici avanzati
- Utilizzare software di simulazione per sistemi meccanici e robotici

Modalità di verifica delle capacità

Durante il corso le tecniche apprese di pianificazione e controllo verranno applicate su sistemi meccanici e robotici simulati e/o fisici in attività di esercitazione e laboratoriale, sotto la supervisione dei docenti e dei collaboratori alla didattica

Comportamenti

Al termine del corso gli studenti avranno sviluppato l'attitudine a riconoscere nei problemi applicativi di diversa natura che possono essere loro proposti, le caratteristiche salienti dei sistemi robotici in una accezione ampia del termine, di riconoscere le tecniche più adeguate per la pianificazione del moto e per il controllo, e di applicare gli strumenti di progetto appresi.

Modalità di verifica dei comportamenti

Agli studenti verrà chiesto di proporre argomenti di approfondimento nei quali loro stessi dovranno scegliere i sistemi cui applicare le tecniche apprese. In questo modo, potranno dimostrare di saper estendere l'applicabilità dei metodi ad una classe più generale di problemi che potranno incontrare nella loro vita professionale.

Prerequisiti (conoscenze iniziali)

• Modellistica cinematica e dinamica di sistemi meccanici senza e con vincoli

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

- Teoria dei sistemi lineari;
- · Tecniche di controllo dei sistemi lineari;
- · Elementi di algebra lineare e teoria dei grafi
- Capacità di utilizzo di software di analisi e simulazione (e.g. Matlab, Simulink)

Corequisiti

Nessuno

Prerequisiti per studi successivi

Nessuno

Indicazioni metodologiche

Le lezioni vengono svolte alla lavagna con l'eventuale uso di supporti multimediali per la visione di immagini e video. Modalità di apprendimento:

- · Partecipazione alle lezioni
- · Partecipazione a seminari
- · Partecipazione alle discussioni
- Studio individuale
- · Lavoro di gruppo
- · Lavoro di laboratorio

Metodologia di insegnamento:

- Lezioni
- Seminari
- Tutorato

Programma (contenuti dell'insegnamento)

Il corso include due parti: la prima tratta la modellistica dei sistemi meccanici e robotici, la seconda con il controllo degli stessi sistemi. Contenuti:

- 1. Presentazione del corso. Problematiche di controllo di sistemi lineari ottenuti per linearizzazione da sistemi non lineari. Esempi delle limitazioni connesse alla progettazione classica (ingresso-uscita) del controllo.
- Stabilità. Stabilità di un movimento e di un punto di equilibrio. Stabilità semplice ed asintotica. Stabilità di sistemi lineari. Metodo diretto ed indiretto di Lyapunov. Teoremi di Lasalle e Krasovskii. Cicli limite ed insiemi invarianti. Dominio di attrazione di un equilibrio. Globale asintotica attrattività. Velocità di convergenza. Equazione matriciale di Lyapunov e stabilità di sistemi lineari. Analisi della stabilità di un sistema non lineare mediante linearizzazione. (L: 10; E: 5)
- 3. Raggiungibilità e Controllabilità. Proprietà strutturali di un sistema dinamico. Insieme raggiungibile di sistemi lineari tempo invarianti (TC e TD). Matrice di raggiungibilità in funzione del tempo. Raggiungibilità e cambiamenti di coordinate lineari. Controllabilità all'origine. Pianificazione ottima, pseudoinversa di Moore-Penrose e decomposizione ai valori singolari di una matrice. Raggiungibilità di sistemi lineari tempo varianti. Definizione di sottospazi invarianti e forma standard di controllabilità. Ripartizione degli autovalori della matrice di aggiornamento dello stato tra sottospazio raggiungibile e non. Verifiche dirette di raggiungibilità. Raggiungibilità di sistemi SISO. Lemma P.B.H.. Forma canonica di controllo. Raggiungibilità di sistemi MIMO.
- 4. Retroazione degli stati. Controllo di sistemi lineari mediante retroazione degli stati. Invarianza delle proprietà di raggiungibilità di un sistema rispetto alla retroazione degli stati. Autovalori fissi e autovalori modificabili dalla retroazione. Algoritmi di allocazione degli autovalori. Invarianza degli zeri di trasmissione. Sistemi a più ingressi. Stabilizzabilità di un sistema lineare. (L:3; E: 2).
- 5. Osservabilità e Ricostruibilità. Osservabilità di sistemi lineari tempo invarianti (TC e TD). Insieme indistinguibile in funzione del tempo. Osservabilità e cambiamenti di coordinate lineari. Ricostruibilità dello stato. Sottospazi invarianti e forma standard di osservabilità. Stima Ottima. Osservabilità di sistemi lineari tempo varianti. Ripartizione degli autovalori della matrice di aggiornamento dello stato tra sottospazio inosservabile e non. Funzione di trasferimento e sottospazio inosservabile. Verifiche dirette di osservabilità. Osservabilità di sistemi SISO. Lemma P.B.H. di osservabilità. Forma canonica di osservazione. Scomposizione di Kalman.

(L: 9; E: 4)

(L: 10; E: 5)

Regolazione di sistemi e retroazione delle uscite. Retroazione statica delle uscite. Retroazione dinamica delle uscite. Osservatore asintotico dello stato. Realizzazione di sistemi. Regolatore. (L: 3; E:2)

2 Parte -

1. INTRODUZIONE (L4; E0): Modalità del corso; Automazione industriale e robotica; Origini, impieghi e prospettive della robotica;

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Classificazione dei robot industriali: bracci articolati, veicoli autonomi; Contenuti del corso. 2. GEOMETRIA E DUALITA' CINETO-STATICA (L15; E5): Descrizione delle posizioni e delle orientazioni dei corpi rigidi; Matrici di rotazione e coordinate omogenee; Notazione di Denavit-Hartenberg; Cinematica diretta e inversa dei manipolatori; Matrici Jacobiane e singolarità cinematiche; Metodi iterativi per la soluzione del problema cinematico inverso; Trasformazioni di sistemi di forze; Dualità cineto-statica; Indici di destrezza. 3. DINAMICA (L10, E6): Dinamica del corpo rigido; Equazioni e metodo di Eulero-Lagrange; Energia cinetica e potenziale di un manipolatore; Formulazione ricorsiva di Newton-Eulero (cenni); Confronto tra gli algoritmi per la dinamica dei robot: metodi simbolici e numerici; Simulazione del moto di un manipolatore; Dinamica del manipolatore nel proprio spazio operativo; Proprietà della dinamica dei sistemi meccanici classici; Linearità nei parametri dinamici. 4. SISTEMI CON VINCOLI (L6, E4): Vincoli cinematici. Vincoli olonomi e anolonomi; Sistemi articolati cooperanti. Forze interne ed equilibrio; Elasticità dei vincoli; Robot paralleli; Veicoli anolonomi; Indici di destrezza per sistemi vincolati; Dinamica dei sistemi vincolati.

Bibliografia e materiale didattico

- P. Bolzern, R. Scattolini, N. Schiavoni: "Fondamenti di Controlli Automatici", McGraw Hill - E. Fornasini, G. Marchesini: "Appunti di Teoria dei Sistemi" -Notes of the lecturer (available on the course website) second part: - B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, "Robotica – Modellistica, Pianificazione e Controllo", McGraw-Hill, Terza Edizione, 2008. - Notes of the lecturer (available on the lecturer's website) Recommended readings include (second part): - R. M. Murray, Z. Li, S. S. Sastry, "A Mathematical Introduction to Robotic Manipulation", CRC Press, 1994. - M. W. Spong, S. Hutchinson, M. Vidyasagar, "Robot Modeling and Control", J. Wiley & Sons, 2006. - J. Angeles, "Fundamentals of Robotic Mechanical Systems: theory, methods and algorithms", Springer, Second Edition, 2003. - L. W. Tsai, "Robot Analysis – The Mechanics of Serial and Parallel Manipulators", J. Wiley & Sons, 1999. - A. A. Shabana, "Dynamics of Multibody Systems", Cambridge University Press, Third Edition, 2005

Indicazioni per non frequentanti

Nessuna differenza di programma o di valutazione

Modalità d'esame

L'esame consiste in prove scritte ed orali sulle due parti del corso. Entrambe sono articolate in uno o più esercizi da svolgere autonomamente, con l'uso del materiale del corso e di ogni altro materiale ritenuto utile; ed in una o più domande cui rispondere oralmente interagendo con la commissione.

In aggiunta o in alternativa alla prova orale, l'esame consiste nella valutazione dei risultati di approfondimento mediante esposizione di tavole o di progetti proposti e svolti dai candidati.

Stage e tirocini

Possibili su iniziativa indipendente dello studente

Altri riferimenti web

Nessuna

Ultimo aggiornamento 25/07/2018 14:19

3/3