Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

FONDAMENTI E METODOLOGIE DIDATTICHE PER L'INSEGNAMENTO DELLA CHIMICA

Tipo

LEZIONI

VALENTINA DOMENICI

Anno accademico 2018/19
CdS CHIMICA
Codice 319CC
CFU 3

Moduli Settore/i
FONDAMENTI E CHIM/02
METODOLOGIE
DIDATTICHE PER
L'INSEGNAMENTO DELLA
CHIMICA

Obiettivi di apprendimento

oblettivi di apprendime

Conoscenze

Al termine del corso:

- Lo studente avrà acquisito conoscenze in merito all'inquadramento teorico su cui si basa l'apprendimento delle scienze e le basi concettuali e teoriche dell'insegnamento delle scienze e della Chimica in particolare.
 - Lo studente avrà acquisito conoscenze sulle principali metodologie e strategie didattiche per un efficacie insegnamento della Chimica, non solo nei contesti formali (scuole di ogni ordine e grado, università) ma anche in quelli informali (centri culturali, musei, sedi istituzionali, ...).

Ore

24

Docente/i

VALENTINA DOMENICI

- Lo studente avrà acquisito conoscenze relative alla progettazione di attività di didattica laboratoriale di chimica in funzione degli obiettivi e del livello dei discenti.
- Lo studente avrà acquisito conoscenze relative ai diversi linguaggi della chimica, alla specificità del linguaggio della Chimica rispetto alle altre discipline e alle diverse strategie di comunicazione della chimica in ambiti formali e informali.

Modalità di verifica delle conoscenze

Durante il corso, il docente accerta le conoscenze dei ragazzi attraverso domande aperte all'inizio di ogni lezione.

Durante il corso, il docente accerta le conoscenze dei ragazzi dando a piccoli gruppi di studenti alcuni argomenti da approfondire o articoli di didattica da leggere e poi relazionare al resto della classe nella lezione successiva.

Durante il corso, il docente organizza attività interattive a piccoli gruppi (con modalità "cooperative learning") per accertare le conoscenze degli alunni su aspetti metodologici della disciplina.

Capacità

- Lo studente sarà in grado di scegliere quale strategia didattica utilizzare in funzione degli obiettivi didattici e del target (tipo di scuola a cui ci si rivolge, ambito formale o informale).
- Lo studente saprà come si costruisce un percorso didattico, secondo uno schema di lavoro strutturato, definendo chiaramente gli
 obiettivi, il procedimento, la metodologia, i tempi, le modalità di verifica dell'apprendimento, ...
- Lo studente sarà in grado di utilizzare un linguaggio appropriato in funzione del target, saprà inoltre scegliere il linguaggio adatto ad una comunicazione formale o informale di argomenti fondamentali della Chimica trattati durante il corso.

Modalità di verifica delle capacità

- Il docente propone agli studenti alcuni argomenti su cui costruire un percorso didattico strutturato, che gli studenti possono alla fine del corso mettere in pratica (l'ultima fase è facoltativa).
- Durante il corso, il docente crea momenti di discussione tra i ragazzi relativi al percorso didattico che stanno progettando, al fine di verificare le loro capacità.
- Durante il corso, alcune lezioni saranno impostate in modo che siano gli studenti stessi ad introdurre alcuni argomenti rilevanti per il corso (con modalità flipped classroom), per verificare le loro capacità in merito all'utilizzo delle strategie didattiche e del linguaggio specifico della Chimica.

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Comportamenti

- · Gli studenti dovranno confrontarsi tra loro, discutere, argomentare e presentare agli altri il loro lavoro.
- In alcuni momenti, i ragazzi lavoreranno in classe secondo il metodo "cooperative learning" e quindi saranno importanti i rapporti tra ragazzi e in generale le dinamiche di gruppo.
- Per i ragazzi che vorranno mettere in pratica il percorso didattico (tipicamente in una scuola o nel contesto "museo") i ragazzi dovranno usare un linguaggio appropriato e sapersi comportare adeguatamente con ragazzi o bambini più piccoli.

Modalità di verifica dei comportamenti

La verifica dei comportamenti descritti sopra avviene durante il corso e alla fine del corso, ed è il risultato della valutazione delle
diverse attività sopra descritte. Il docente utilizza di volta in volta uno schema di valutazione che viene poi discusso con i ragazzi.

Prerequisiti (conoscenze iniziali)

Lo studente dovrebbe aver seguito i corsi di base del primo anno di laurea triennale e quindi avere conoscenze di base della Chimica generale.

Indicazioni metodologiche

- Lezioni frontali (meno del 30%), con ausilio di slide e proiezioni.
- · Lezioni interattive (oltre il 70%) che prevedono la partecipazione attiva degli studenti.
- Le metodologie principali adottate nelle varie lezioni tematiche sono: brainstorming, cooperative learning, peer education e flipped classroom.
- Durante il corso, il docente offre la possibilità agli studenti di partecipare ad alcune attività didattiche svolte nelle scuole o nel contesto "museo", sia come semplici osservatori sia come co-tutor.
- Tutti i materiali forniti a lezione sono disponibili sul sito di e-learning del corso.
- Le comunicazioni docente-studenti avvengono sia tramite e-learning che via e-mail.
- Materiale didattico aggiuntivo è fornito sul sito di e-learning (articoli, review, approfondimenti didattici) o su cartelle condivise (dropbox).
- Il docente è a disposizione degli studenti preferibilmente attraverso ricevimenti sia collettivi che personali.

Programma (contenuti dell'insegnamento)

Questi gli argomenti trattati:

- Cenni alle teorie dell'apprendimento
- Strategie e tecniche di insegnamento
- Aspetti curriculari dell'insegnamento della Chimica nella scuola italiana di oggi
- Insegnamento della Chimica in ambito universitario e formazione degli insegnanti
- La Chimica e i suoi principi fondanti (nodi concettuali della disciplina)
- · Come si costruisce un percorso didattico
- · La didattica laboratoriale nell'insegnamento della Chimica
- Problem solving e inquiry-based learning nell'insegnamento della Chimica
- · Altri metodi interattivi nell'insegnamento della Chimica
- Il ruolo delle nuove tecnologie nell'insegnamento della Chimica
- La verifica dell'apprendimento della Chimica
- Insegnare la Chimica a persone con difficoltà, disabilità e svantaggi
- Didattica della Chimica in ambiti formali e informali
- · L'immagine della Chimica ieri e oggi.
- · L'importanza del linguaggio nella comunicazione e nell'insegnamento della Chimica
- · Insegnare la Chimica a tutti: lifelong learning
- Insegnare e comunicare la Chimica attraverso i media e i social network
- Insegnare e comunicare la Chimica nei Musei Scientifici

Bibliografia e materiale didattico

Il testo di riferimento del corso è:

VALENTINA DOMENICI, "INSEGNARE E APPRENDERE CHIMICA", MONDADORI UNIVERSITA', FIRENZE, 2018

Il docente inoltre attinge ad una bibliografia piuttosto vasta segnalando agli studenti capitoli e parti specifiche dei seguenti testi:

- Javier García-Martínez (Editor), Elena Serrano-Torregrosa (Editor), Peter W. Atkins (Foreword by). "Chemistry Education: Best Practices, Opportunities and Trends" WILEY 2015.
- · J. P. VanCleave, "Chemistry for Every Kid", WILEY 1989.
- William H. Brock, "The Chemical Tree", First American Edition: 2000.
- · Autori vari, "La Chimica alle Elementari" Giunti Lisciani Editori: 1996.
- Paolo Mirone, "Lezioni di didattica della chimica", Atti Soc. Nat. Mat. Modena, 136 (2005).

DICALLANIS

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- R.Cervellati, D. Perugini "Guida alla didattica della chimica", Zanichelli.
- R. Cervellati, F.Olmi: "Tecniche di verifica dell'apprendimento della chimica", Zanichelli.
- J.I. Solov'ev "L'evoluzione del pensiero chimico", EST Mondadori.
- Pier Luigi Riani, (a cura di) "Il Concetto di Trasformazione", Stampa UNIPI
- Pier Luigi Riani, (a cura di) "Argomenti di Chimica", Star: 2006.
- G. Cavallini "La formazione dei concetti scientifici", La Nuova Italia.
- Schwab J., "L'insegnamento della scienza come ricerca", Armando editore, Roma, 1976.
- The Joy of Chemistry: The Amazing Science of Familiar Things, Cathy Cobb, Monty L. Fetterolf. Prometeous Book: 2010.
- I bottoni di Napoleone. Come 17 molecole hanno cambiato la storia. Penny Le Couteur, Jay Burreson. TEA: 2008.
- Il sistema periodico. Primo Levi. Einaudi: 1994.
- Come si sbriciola un biscotto? Joe Schwarz. TEA: 2010.
- La chimica allo specchio. Hoffmann Roald, Longanesi: 2006.
- Bella e potente: la chimica del Novecento fra scienza e società. Luigi Cerruti, Editori Riuniti: 2003.

Indicazioni per non frequentanti

Nessuna in particolare

Modalità d'esame

- L'esame prevede una prova orale, che consiste in un colloquio tra il candidato e il docente. Il colloquio inizia con l'esposizione del progetto didattico ideato e realizzato dallo studente. Se il progetto è stato portato in una scuola o in un museo, parte dell'esame verte sull'analisi dell'efficacia dell'intervento didattico e sull'eventuale valutazione dei feedback avuti dagli studenti. Il resto dell'esame consiste in domande aperte sui punti del programma. Il docente terrà anche conto delle valutazioni eventualmente fatte durante il corso finalizzate a valutare la partecipazione, il comportamento, l'interazione con gli altri studenti durante le attività di cooperative learning e sulle presentazioni fatte dagli studenti durante le attività flipped classroom.
- Il colloquio dura da 60 a 90 minuti.
- La prova orale non è superata se il candidato non ha progettato il percorso didattico, se dimostra di non aver compreso le metodologie didattiche, se dimostra di non sapere utilizzare un linguaggio appropriato e adeguato per la disciplina.

Altri riferimenti web

Tutti i riferimenti si trovano sul sito di e-learning dell'Università.

Note

Nessuna

Ultimo aggiornamento 21/07/2018 12:11

3/3