

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa FISICA GENERALE II

ANDREA VERLICCHI

Anno accademico 2019/20

CdS INGEGNERIA DELLE

TELECOMUNICAZIONI

Codice 056BB

CFU

Moduli Settore/i Tipo Ore Docente/i

FISICA GENERALE II FIS/01 LEZIONI 60 ANDREA VERLICCHI

6

Obiettivi di apprendimento

Conoscenze

Strumenti di base per la comprensione delle leggi di Maxwell dell'elettromagnetismo nel vuoto e nella materia e loro applicazione a casi pratici quali conduttori, circuiti, campi elettrici e magnetismo nella materia.

Modalità di verifica delle conoscenze

Esercitazione scritta durante il corso su argomenti concordati.

Capacità

Risolvere problemi di elettrostatica anche nei materiali; calcolare andamento di circuiti di tipo RC, LC. Valutare effetti riconducibili alla legge di Faraday anche nella materia. Valutazione e calcolo di fenomeni dovuti ad auto e mutua induzione.

Modalità di verifica delle capacità

Esecitazione scritta.

Comportamenti

Migliore comprensione del mondo fisico relativamente all'elettromagnetismo.

Modalità di verifica dei comportamenti

Esercitazione scritta.

Prerequisiti (conoscenze iniziali)

Prepazione di scuola media superiore con elementi base di analisi matematica: studio di funzione, derivata e integrale di funzioni elementari.

Programma (contenuti dell'insegnamento)

ELETTROSTATICA (nel vuoto): Legge di Coulomb - Campo elettrico di una carica puntiforme E=(kq/r2) Principio di sovrapposizione E=?Ek. Campo elettrico di una distribuzione continua di carica.

Circuitazione del campo elettrostatico e definizione di differenza di potenziale: Va ? Vb = . Potenziale di una carica puntiforme V = kq/r. Il campo come gradiente del potenziale. Gradiente di una funzione scalare e sua forma in coordinate cartesiane.

Teorema di Gauss: ?E?dA =?qint/e0 (prima equazione di Maxwell). Definizione di divergenza di un campo vettoriale come limite del rapporto flusso/volume e sua forma in coordinate cartesiane. Forma locale del teorema di Gauss.

Gradiente e divergenza in coordinate sferiche e cilindriche per potenziali V(r). Il dipolo elettrico.

Elettrostatica dei conduttori: capacità del conduttore isolato C = Q/V; condensatore. Capacità dei condensatori sferico, cilindrico e piano.

Definizione di potenziale e significato di "messa a terra".

Energia elettrostatica di un sistema di cariche puntiformi.

Energia di un conduttore carico $\frac{1}{2}$ Q*Q/C = $\frac{1}{2}$ QV e densità di energia elettrica: $u = \frac{1}{2}$?0 E2.

<u>Corrente elettrica</u>: modello di Drude del moto di cariche in un conduttore. Definizione di corrente elettrica: legge Ohm. Conducibilità e resistività, valori tipici per un conduttore (es. rame). L'Ohm come unità di misura della resistenza. Legge di Joule nella forma PJ = R I2. Forza elettromotrice come d.d.p. ai capi di un generatore a circuito aperto. Conservazione della carica ed equazione di continuità: . Applicazione alla scarica di un condensatore: grafici q(t) e i(t). Calcolo dell'energia dissipata sulla resistenza. Secondo principio di Kirchhoff per una maglia come

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

conseguenza della irrotazionalità del campo elettrostatico: ??Vk = 0. Primo principio di Kirchhoff per i nodi: ?ik = 0. Carica di un condensatore e relativi grafici: costante di tempo RC e sua interpretazione fisica. Forza elettromotrice come lavoro per unità di carica.

<u>Dielettrici</u>: modello di dielettrico. Definizione del vettore polarizzazione P come densità volumetrica del momento di dipolo elettrico. Teorema di Gauss per il vettore polarizzazione e sua forma locale. Definizione del vettore **D**: ?0**E** + **P**. Teorema di Gauss per il vettore **D** e sua forma locale. Dielettrici isotropi lineari in cui **P** = ??0**E**. Condizioni al contorno per i vettori **E**, **D** e **P**. Densità di energia elettrostatica: **W** = ½ **ED**. Significato fisico del termine ½ **EP**. Forza su un dielettrico. Rifrazione delle linee di campo di **E** e **D** alle superfici di discontinuità.

CAMPO MAGNETICO (nel vuoto): Campo magnetico generato da una corrente: legge di Biot-Savart. Teorema di Ampère. Teorema di Gauss per il campo magnetico: (2a equazione di Maxwell). Unità di misura del campo magnetico: Tesla e gauss. Forza di Ampère e definizione dell'Ampère come unità di misura della corrente. Momento magnetico **pm** di una spira percorsa da corrente. Momento meccanico **?** = **pm** x **B** su una spira. Passaggio al limite per la circuitazione del campo **B**: definizione di rotore e deduzione della sua espressione in coordinate cartesiane; forma locale.

Forza di Lorentz: moto di una particella carica in un campo magnetico. Il ciclotrone; l'elettronvolt. Proprietà dei campi solenoidali. <u>Campo magnetico nella materia</u>: materiali paramagnetici e diamagnetici. Il meccanismo del diamagnetismo nel modello atomico classico. Il vettore magnetizzazione **M** e proprietà della sua circuitazione. Definizione del vettore **H** = **B**/m0 - **M**.

Circuitazione di H e sua forma locale. Condizioni al contorno per i campi B ed H. Relazione lineare tra M ed H: suscettività magnetica c e permeabilità magnetica relativa mr. Il campo magnetico di un solenoide rettilineo con nucleo paramagnetico. Precessione di Larmor: calcolo. Ferromagnetismo: caratteristiche generali; la curva di prima magnetizzazione; ciclo di isteresi. Definizione di forza coercitiva. Campi all'interno di un magnete cilindrico, ed espressione B?m0M come conseguenza di H?0.

Induzione elettromagnetica: gli esperimenti di Faraday e la legge di Faraday – Neumann - Lenz. Circuito con un lato mobile (binario) in presenza di un campo magnetico: comparsa della forza elettromotrice o come conseguenza della forza di Lorentz o come effetto della legge di Faraday. Le nuove implicazioni della legge di Faraday: campo elettrico indotto all'esterno di un solenoide rettilineo percorso da corrente variabile. Proprietà del campo elettrico indotto.

Terza equazione di Maxwell

Autoinduzione: coefficiente di autoinduzione. Calcolo del coefficiente di autoinduzione per un solenoide rettilineo ideale mediante la relazione flusso(\mathbf{B}) = LI. Secondo principio di Kirchhoff in presenza di elementi induttivi: circuito RL e circuito LC. Energia magnetica e derivazione dell'espressione per la densità di volume di energia magnetica. Effetto Kelvin (o effetto pelle): calcolo dimostrativo basato sulla 3° equazione di Maxwell sulla non consistenza dell'ipotesi di densità di corrente \mathbf{J} uniforme ad alte frequenze. Mutua induzione: calcolo per due solenoidi perfettamente accoppiati e per due spire circolari complanari. Equazioni di maglia per circuito con accoppiamento magnetico: rocchetto di Rumkhorff. Campo solenoidale e inconsistenza della legge di Ampere per campi rapidamente variabili nel tempo. Corrente di spostamento e 4a equazione di Maxwell.

Equazioni di Maxwell nel vuoto e soluzione per le onde piane. Proprietà generali delle onde piane. Onde piane circolari: Acosk(z±ct). Numero d'onda; velocità di propagazione c. Relazione ??=c. Vettore di Poynting: S e suo significato. Esempio della batteria.

Bibliografia e materiale didattico

Irodov, Le basi dell'elettromagnetismo. In particolare gli argomenti del corso si trovano compresi nei seguenti capitoli:

capitolo 1: tutto

capitolo 2: esclusi §2.5

capitolo 3: tutto

capitolo 4: tutto

capitolo 5: tutto

capitolo 6: escluse formule (6.33) e (6.34) e §6.8

capitolo 7: tutto

capitolo 9: escluso §9.6 e §9.7

capitolo 10: §10.1, §10.2, §10.3 e §10.4

A completamento degli argomenti trattati sono utili alcuni appunti del docente disponibili in formato pdf sul portale SISDAN.

Modalità d'esame

Esame orale

Pagina web del corso

http://marinaccad.elearning.marina.difesa.it/course/view.php?id=216

Ultimo aggiornamento 17/01/2020 10:34