

UNIVERSITÀ DI PISA COMPLEX SYSTEMS / SISTEMI COMPLESSI

RICCARDO MANNELLA

Anno accademico			2019/20			
CdS			FISICA			
Codice			230BB			
CFU			9			
Moduli SISTEMI COMPLESSI	Settore/i FIS/03	Tipo LEZIONI		Ore 54		Docente/i RICCARDO MANNELLA

Obiettivi di apprendimento

Conoscenze

Students are expected to acquire: some knowledge of stochastic calculus and probability, chaos dynamics and of the relevant tools and models; some knowledge to the appropriate tools to approach complex systems;

Modalità di verifica delle conoscenze

Students are expected to apply the learnt methods to a concrete case of interest. The emphasis will be on how the apply the learnt methodologies rather than on the results achieved in the application. Methods:

Final essay

Capacità

The student will be able to study and model some simple "complex system"

Modalità di verifica delle capacità

The student will be invited to apply to concrete cases some of the methodologies taught, throughout the lectures

Prerequisiti (conoscenze iniziali)

The student need to have the standard knowledge in maths and physics of a physics bachelor: calculus in many variables, knowledge of Fourier transform, classical physics (in particular, Hamiltonian mechanics), some background in classical thermodynamics.

Indicazioni metodologiche

Delivery: face to face

Learning activities:

attending lectures

individual study
Attendance: Advised
Teaching methods:

Lectures

Programma (contenuti dell'insegnamento)

The course has a modular structure: 6 ECTS are devoted to general tools to study complex systems, like stochastic methods, chaotic dyamics etc.. The students then take an additional 3 ECTS modulus which applies the general tools to some complex systems. The modulus offered will depend on the specific academic year: this year it will mostly cover subjects on Econophysics

The general tools part of the course will cover topics like:

Brownian motion, Chapman Kolmogorov equation, Stable (Levy) distributions, Stochastic integration, Fokker Planck equation, Mean First Passage Time related problems, Path integral approach to stochastic processes; Chaotic dynamics both for conservative and dissipative flows, related tools (like Poincare maps and Lyapunov exponents), Fractals.

Sistema centralizzato di iscrizione agli esami Programma

<u>Università di Pisa</u>

Bibliografia e materiale didattico

Gardiner, Handbook of stochastic methods Reichl, The transition to chaos Tabor, Chaos and integrability in nonlinear dynamics

Modalità d'esame

The exam will be in oral form. The student is expected to work on a small project during which he/she will apply the tools and methodologies taught in the lectures, and to prepare a small talk/script, which will be the basis from which the oral exam will be carried out

Ultimo aggiornamento 20/09/2019 15:49