

Sistema centralizzato di iscrizione agli esami

Syllabus

Università di Pisa

PLASMA PHYSICS / FISICA DEI PLASMI

FRANCESCO CALIFANO

2020/21 Academic year **FISICA** Course Code 353BB

Credits 9

Modules Area Type Hours Teacher(s)

FISICA DEI PLASMI FIS/03 **LEZIONI** FRANCESCO CALIFANO 54

Obiettivi di apprendimento

Conoscenze

Acquisire le basi fisiche della teoria dei plasmi e delle differenze e analogie rispetto ai fluidi.

Modalità di verifica delle conoscenze

Valutazione:

Lo studente sarà valutato sulla sua capacità di discutere i contenuti del corso utilizzando la terminologia appropriata. Durante l'esame orale lo studente deve essere in grado di dimostrare le proprie conoscenze del materiale del corso e di saper discutere gli argomenti con linguaggio appropriato e rigore.

Metodi:

Esame orale finale e presentazione di un seminario concordato con il docente

Prerequisiti (conoscenze iniziali)

Laurea triennale

Indicazioni metodologiche

Lezioni frontali

Attività di apprendimento:

- · presenza alle lezioni
- · partecipazione ai seminari
- · studio individuale

Presenza: Obbligatoria Metodi di insegnamento:

- Lezioni
- Seminari

Programma (contenuti dell'insegnamento)

Fondamenti:

Definizione di plasma elettromagnetico; Lunghezze e tempi caratteristici; Frequenza di plasma Termodinamica statistica di un plasma

Ruolo delle collisioni, tempo di rilassamento e tempo dinamico

Variabili microscopiche:

Necessita' di una descrizione microscopica, nonlinearita' e nonlocalita' della dinamica di un plasma

Funzione di distribuzione ed equazione di Vlasov; Onde di Langmuir e risonanza di Landau

Teoria fenomenologica della turbolenza nei fluidi; Cenni alla turbolenza nei plasmi.

Variabili macroscopiche:

Equazioni dei momenti: modello a due fluidi e a singolo fluido

La descrizione magnetoidrodinamica (MHD) di un plasma

La legge di Ohm per plasmi magnetizzati; il teorema di congelamento

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Equilibrio e stabilità. Linearizzazione e analisi ai modi normali Esempi di propagazione di onde in teoria fluida: onde longitudinali; onde elettromagnetiche; onde MHD Principali instabilità nella descrizione MHD La riconnessione magnetica Introduzione ai motori a plasma Applicazioni:
Fisica dello spazio, fusione magnetica

Bibliografia e materiale didattico

Krall A, W.Trivelpiece; Principles of Plasma Physics, McGraw-Hill, 1973; G. Pucella, S. Segre, Fisica dei Plasmi, Zanichelli 2009 D.R.Nicholson, Introduction to Plasma Theory Krieger Publ.Co

Indicazioni per non frequentanti

Guardare con attenzione il registro delle lezioni. Contattare il docente.

Modalità d'esame

Orale (colloquio tra il candidato e il docente in forma di domanda/risposta e esercizi alla lavagna sui vari argomenti trattati nel corso) + seminario concordato con il docente su un argomento non trattato nel corso ma attinente al corso (materiale da trovare con ricerca in biblioteca, sul web o su consiglio del docente).

Altri riferimenti web

http://www.plasapar.com/en/summer-school-2017

Ultimo aggiornamento 05/08/2020 22:43

2/2