Sistema centralizzato di iscrizione agli esami Programma

2020/21

6

Università di Pisa

MATEMATICA FINANZIARIA (STRUMENTI DERIVATI)

DAVIDE RADI

Anno accademico

CdS BANCA, FINANZA AZIENDALE E

MERCATI FINANZIARI

Codice 385PP

CFU

ModuliSettore/iTipoOreDocente/iMATEMATICASECS-S/06LEZIONI42DAVIDE RADI

FINANZIARIA (STRUMENTI DERIVATI)

Obiettivi di apprendimento

Conoscenze

Alla fine del corso gli studenti devono:

- · aver acquisito conoscenze avanzate sui processi stocastici e sui modelli probabilistici usati in finanza;
- conoscere i derivati finanziari più diffusi nei mercati finanziari.
- · conoscere le formule per il pricing dei derivati finanziari;
- conoscere le principali strategie di hedging ottenute usando derivati finanziari.

Modalità di verifica delle conoscenze

La preparazione degli studenti sarà valutata attraverso un esercizio pratico e domande teoriche.

Capacità

Al termine del corso:

- Lo studente sarò in grado di gestire le principali tecniche di calcolo stocastico;
- Lo studente sarà in grado di definire quale processo stocastico è meglio usare per rappresentare una certa variabili finanziaria;
- · Lo studente sarò in grado di prezzare i principali prodotti derivati usando MatLab;
- Lo studente sarà in grado di calibrare i principali modelli per il pricing dei derivati;
- · Lo studente sarà in grado di sviluppare in autonomia strategie di hedging che implicano l'uso di derivati;
- · Lo studnete sarà in gradi di sviluppare strategie di investimento che implicano l'uso di derivati.

Modalità di verifica delle capacità

- Lo studente dovrà implementare le principali formule per il pricing dei derivati in MatLab.
- Lo studnete dovrà scaricare dati finanziari e calibrare i principali modelli studiati.
- Lo studente dovrà sviluppare in autonomia strategie di investimento o di hedging usado i modelli matematici studiati.

Comportamenti

Lo studente potrà acquisire le conoscienze di base del calcolo stocastico che gli consentiranno di sviluppare modelli di pricing e hedging e sarà in grado di calibrare questi modelli utilizzando i dati di mercato.

Modalità di verifica dei comportamenti

L'insegnante valuta le abilità degli studenti attraverso sessioni di lavoro in cui gli studenti sono chiamati ad implementare modelli di pricing in Matlab e a calibrare gli stessi utilizzando i dati di mercato.

Prerequisiti (conoscenze iniziali)

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

No

Indicazioni metodologiche

Il corso prevede lezioni frontali, in alcuni casi viene utilizzato il computer per:

- Testare le proprietà studiate di alcuni processi stocastici;
- Implementare le fomrula di pricing studiate;
- · Calibrare i modelli:
- Sviluppare strategie di hedging e/o di investimento;
- · Svolgere esercitazioni pratiche in aula.

Programma (contenuti dell'insegnamento)

- 1. Un'introduzione intuitiva alla Teoria della Misura;
- 2. Processi Stocastici (Random Walk e Processo di Wiener);
- 3. Calcolo stocastico di Ito (Moto Browniano Geometrico, Processo di Mean-Reverting e loro calibrazione usando MATLAB);
- 4. Modelli di Mercato a Tempo Continuo e Teoria dell'Arbitraggio;
- 5. Pricing di Opzioni Europee Vanilla usando il modello Black-Scholes e implementazione in MATLAB;
- 6. Metodi Numerici per il Pricing delle Opzioni Americane;
- 7. Modelli per i Tassi di Interesse e Pricing di Bonds Risk-fee (Implementazioni in MATLAB);
- 8. Pricing dei Derivati sui Tassi di Interesse (Implementazioni in MATLAB);
- 9. Variabili Aleatorie Stopping-Time e Probabilità di Primo Passaggio;
- 10. Pricing di Opzioni Esotiche di tipo Europeo e Applicazioni in MATLAB;
- 11. Calcolo del Rischio di Default di un'azienda e Pricing dei Bond Defaultable;
- 12. Modelli Strutturali per il Rischio di Credito: Applicazioni al Mercato dei Derivati Creditizi;
- 13. Processi Stocastici con Salto (Processi di Poisson e Processi di Cox);
- 14. Modelli in Forma Ridotta per il Rischio di Credito con Applicazioni al mercato dei Credit Default Swaps (CDS);
- 15. Teoria dei Networks e Stima del Rischio Sistemico nel Settore Bancario.

Bibliografia e materiale didattico

Per preparare l'esame sono sufficienti gli appunti messi a disposizione del docente. Un manuale che copre per intero gli argomenti trattati non esiste. Lo studente che è interessato a letture aggiuntive può considerare uno dei seguenti libri:

- A First Course in Quantitative Finance, Thomas Mazzoni, Cambridge University Press, 2018, ISBN: 978-1-108-41143-1. (Chapters: 2,11,12, 13, 14, 17, 18, 19, 20)
- Andrea Pascucci, PDE and Martingale Methods in Option Pricing, Springer, 2011, ISBN: 978-88-470-1780-1. (Chapters: 1, 2, 3, 4, 5, 7, 9, 10, 11, Appendix A)
- Bernt Øksendal, Stochastic Differential Equations: An Introduction with Appliactions, Springer: Universitext, 2003, ISBN: 978-3-642-14394-6. (Chapters: 1, 2, 3, 4, 5, 7, 8, 12, Appendix A, B, C, D)
- Paul Wilmott, Paul Wilmott introduces quantitative finance, John Wiley and Sons, Ltd, 2007, ISBN: 978-0-470-31958-1. (Chapters: 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 15, 16, 17, 18, 23, 28)

Indicazioni per non frequentanti

Non ci sono indicazioni aggiuntive per i non frequentanti.

Modalità d'esame

L'esame consiste in una prova scritta e una prova orale.

Altri riferimenti web

https://elearning.ec.unipi.it

Note

Il materiale didattico è disponibile al seguente link:

https://elearning.ec.unipi.it

https://moodle.ec.unipi.it/course/view.php?id=823

Ultimo aggiornamento 16/02/2021 14:17