

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

ATOM OPTICS / OTTICA ATOMICA

DONATELLA CIAMPINI

Anno accademico 2021/22
CdS FISICA
Codice 221BB
CFU 9

Moduli Settore/i Tipo Ore Docente/i
OTTICA ATOMICA FIS/03 LEZIONI 54 ENNIO ARIMONDO
DONATELLA CIAMPINI

Obiettivi di apprendimento

Conoscenze

- 1) Consolidare le conoscenze relative all'interazione della luce con un sistema quantistico.
- 2) Approfondire i meccanismi di scambio di quantità di moto e del raffreddamento laser.
- 3) Saper descrivere in modo semplice le interazioni a due corpi tra atomi ultra-freddi e il loro controllo.
- 4) Interferenza quantistica di onde di materia: l'interferometria atomica e le correlazioni quantistiche.
- 5) Esplorare le frontiere della fisica atomica: i gas quantistici degeneri come sistemi semplici per studiare la fisica a molti corpi.

Modalità di verifica delle conoscenze

Esame orale alla fine del corso; eventuale partecipazione alle discussioni durante le lezioni.

Capacità

Lo studente sara' in grado di comprendere e di prevedere il comportamento di un atomo, schematizzato come un sistema a due livelli, che interagisce con radiazione elettromagnetica, in un ampio range di situazioni, con particolare riferimento alla fisica degli atomi freddi. Lo studente sarà in grado di comprendere i contenuti fondamentali di un articolo scientifico attinente gli argomenti trattati nel corso.

Modalità di verifica delle capacità

Esame orale alla fine del corso; eventuale partecipazione alle discussioni durante le lezioni.

Comportamenti

Lo studente sarà in grado di esporre in modo chiaro i contenuti fondamentali di un articolo scientifico attinente gli argomenti trattati nel corso.

Modalità di verifica dei comportamenti

Esame orale alla fine del corso; eventuale partecipazione alle discussioni durante le lezioni.

Prerequisiti (conoscenze iniziali)

Le conoscenze iniziali richieste sono quelle fornite dai corsi dalla Laurea in Fisica, in particolare nei corsi di Meccanica Quantistica e Struttura della Materia.

Indicazioni metodologiche

Attività didattiche:

- · partecipare alle lezioni
- · partecipare alle discussioni
- studio individuale
- · ricerca bibliografica

Partecipazione alle lezioni: raccomandata Metodo di insegnamento: lezioni frontali

Nota: le lezioni potrebbero essere tenute in forma esclusivamente telematica a causa delle restizioni dovute a Covid-19 (se ancora valide nel secondo semestre dell'a.a. 2020/2021).

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Programma (contenuti dell'insegnamento)

CONOSCENZE DI BASE

- Richiami e approfondimenti sull'interazione semiclassica luce-materia. Stati puri e impuri. Importanza delle coerenze atomiche, esempi sperimentali.
- 2. L'atomo vestito. Light shift, light broadening e oscillazioni di Rabi.

OTTICA ATOMICA LINEARE

- 1. Forze radiative su un atomo a due livelli. Forza dissipativa, applicazioni al rallentamento di un fascio atomico. Forza reattiva e sua interpretazione in termini di atomo vestito.
- 2. Raffreddamento laser di un atomo a due livelli, raffreddamento Doppler. Idee di base del raffreddamento sub-Doppler.
- 3. Intrappolamento ottico, magnetico, elettrico di particelle cariche e neutre. Alcune configurazioni sperimentali.

OTTICA ATOMICA NON LINERARE

- 1. Interazioni a due corpi a bassa temperatura: la lunghezza di scattering.
- 2. Controllo delle interazioni atomo-atomo. Risonanze di Feshbach.

OTTICA ATOMICA QUANTISTICA

- 1. Interferenza di onde di materia di De Broglie. Lunghezza di coerenza. Diffrazione di atomi da un'onda stazionaria (gradi di libertà esterni dell'atomo). Oscillazioni di Bloch, implementazione sperimentale con atomi freddi e reticoli ottici.
- Interferometria atomica e frange di Ramsey (gradi di libertà interni ed esterni dell'atomo). Tra le applicazioni, gli orologi atomici con atomi freddi.
- 3. Condensati di Bose-Einstein: descrizione di campo medio e proprietà di coerenza. Laser atomici. Un esempio di effetti non-lineari nell'ottica atomica: Four-wave mixing di onde di materia.
- 4. Effetto Josephson per atomi ultra-freddi in una doppia buca di potenziale. L'Hamiltoniana di Bose-Hubbard. La transizione superfluido-isolante di Mott per un gas di bosoni in un reticolo ottico.

Bibliografia e materiale didattico

Pierre Meystre "Atom Optics", Springer (2001)

Claude Cohen-Tannoudji and David Guéry-Odelin "Advances in Atomic Physics", World Scientific (2011)

Materiale didattico di supporto ad alcune lezioni (articoli scientifici, principalmente) si può trovare sulla pagina web del corso su Elearning.

Indicazioni per non frequentanti

I non frequentanti possono ottenere informazioni dettagliate sul programma svolto a lezione consultando il registro delle lezioni su unimap e sono invitati a contattare il docente per ogni chiarimento.

Modalità d'esame

L'esame consiste in una prova orale, ossia in un colloquio tra il candidato e il docente anche in forma di domanda/risposta, sui vari argomenti trattati nel corso. E' prevista la possibilità di iniziare l'esame con l'esposizione di un argomento a scelta dello studente, presentato sotto forma di seminario (è obbligatorio concordare l'argomento del seminario con il docente).

Nota: gli esami potrebbero essere tenuti in forma esclusivamente telematica a causa delle restizioni dovute a Covid-19.

Ultimo aggiornamento 13/09/2021 06:17