

Università di Pisa

MISURE ELETTRONICHE E STRUMENTAZIONE

GIUSEPPE BARILLARO

Anno accademico

CdS INGEGNERIA ELETTRONICA

Codice 102II CFU 9

Moduli Settore/i Tipo Ore Docente/i
MISURE E ING-INF/01 LEZIONI 90 GIUSEPP

STRUMENTAZIONE ELETTRONICA GIUSEPPE BARILLARO GIOVANNI BASSO LUCANOS MARSILIO STRAMBINI

Obiettivi di apprendimento

Conoscenze

Gli obiettivi del corso sono quelli di fornire allo studente le nozioni di base relativamente al processo di misurazione, alla misura delle principali grandezze elettriche ed elettroniche e alle principali architetture circuitali e strumenti di misura di tipo elettronico.

2021/22

Modalità di verifica delle conoscenze

La verifica delle conoscenze avverrà mediante esame orale e valutazione delle relazioni relative alle esperienze di laboratorio effettuate.

Capacità

Lo studente sarà in grado di effettuare le misurazioni delle principali grandezze elettriche ed elettroniche utilizzando i principali stumenti di misura e sui principi di funzionamento di questi ultimi.

Modalità di verifica delle capacità

La verifica delle capacità avverrà nel corso della prova di esame e attraverso la valutazione della relazione scritto riguardante le esperienze di laboratorio effettuate.

Comportamenti

Lo studente svilupperà e acquisirà una elevata sensibilità per la misura delle principali grandezze elettriche e all'utilizzo dei principali strumenti di misura.

Modalità di verifica dei comportamenti

La verifica dei comportamenti avverrà nel corso della prova di esame e attraverso la valutazione della relazione scritto riguardante le esperienze di laboratorio effettuate.

Prerequisiti (conoscenze iniziali)

I prerequisiti che lo studente dovrebbe possedere per seguire il corso in modo proficuo riguadano la conoscenza dell'elettronica di base e della teoria dei segnali.

Indicazioni metodologiche

Il coso viene tenuto in italiano con lezioni frontali alla lavagna, volte a spiegare gli argomenti di libri e dispense messe a disposizione degli studenti sul sito web elearning. Le esercitazioni sperimentali vengo effettuate in laboratorio formando dei gruppi e le esperienze da effettuare spiegate preliminarmente alla lavagna. Gli studenti possono usufruire del ricevimento e della email del docente per chiarimenti tematici e organizzativi.

Programma (contenuti dell'insegnamento)

1. INTRO: Introduzione al corso. MISURA: Concetto di processo di misura (con schema a blocchi). Classifica degli strumenti (di

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

misura, di stimolo e composti). Strumenti di misura passivi/attivi/a bilanciamento. Concetto di errore assoluto, relativo e percentuale. Definizione di accuratezza, risoluzione, sensibilità, precisione. Errore sistematico/casuale. Concetto di campione di riferimento e di unità di misura; Sistema Internazionale (S.I.). Standard prototipo e standard intrinseci; standard primari, secondari e di lavoro. Esempio dello standard primario di tensione basato sull'effetto Josephson.

- 2. ADC: Schema a blocchi e funzionamento. Struttura di una porta di campiona- mento. Architettura di conversione A/D. Caratteristica ingresso-uscita di un convertitore A/D. Concetto di errore di quantizzazione. Parametri statici di un convertitore A/D: end point line, offset error, gain error, INL, DNL. Dettagli su risoluzione e velocità di conversione di architetture ADC (Flash, Flash-pipeline, SAR, Integrativo, ?-?). Schema e funzionamento di: convertitore Flash, convertitore Flash-pipeline. Convertitore A/D SAR, integrativo a doppia rampa (schema circuitale e funzionamento). Effetto degli offset sul com- paratore e sull'integratore interni allo schema. Parametri dinamici di un convertitore A/D: SNR, SINAD, ENOB, banda analogica. Dipendenza di SNR e SINAD dalla frequenza d'ingresso. DAC: Introduzione ai convertitori D/A, con relativa caratteristica ingresso-uscita.
- 3. DAC: Parametri statici di un convertitore D/A: offset error, gain error, INL, DNL. Schema e funzionamento di due architetture: DAC a resistenze pesate e DAC ladder.
- 4. OSCILLOSCOPIO: Oscilloscopio digitale: introduzione e principio di funzionamento, condizionamento del segnale in ingresso, campionamento, conversione in digitale e memorizzazione dei campioni. Sensibilità verticale e base dei tempi. Il sistema di trigger. Uso dell'oscilloscopio: comandi principali: sensibilità verticale e base dei tempi, uso del trigger. Interpolazione dei dati. Campionamento in tempo reale e campionamento in tempo equivalente (casuale e sequenziale). Attenuatori compensati; la sonda come attenuatore compensato. Misure con l'oscilloscopio. Specifiche e criteri di valutazione di un oscilloscopio. Caratteristiche degli oscilloscopi Agilent 54600B e U1602A/1604A.
- 5. DMM: Struttura generale di un DMM con schema a blocchi. Schema del blocco di condizionamento di un DMM.Schemi circuitali di attenuatori DC (con selettore a valle e a monte del partitore resistivo); considerazioni sull'off- set di corrente e tensione delle due architetture; possibili soluzioni per generare attenuazioni diverse, in partico- lare usando un amplificatore a guadagno variabile. Schema di un attenuatore compensato a doppio stadio; metodi per ricavare un parametro costante da un segnale periodico in uscita dall'attenuatore (valore di picco, valor medio, valore efficace). Schema di un diodo di precisio- ne; metodo di estrazione del valore efficace. Misura di corrente con un DMM. Concetto di rumore; definizione del rapporto segnale-rumore (SNR) e dei vari tipi di rumore (termico, shot e flicker) con relativa densità spettrale di potenza e potenza di rumore. Uso di un amplificatore transresistivo per misure di corrente. Misure di resistenza con un DMM: metodo a tensione impressa e a corrente impressa (due schemi diversi per ogni metodo, con rispettive condizioni sul valore delle resistenze in esame).
- 6. ELETTROMETRO: Caratteristiche di un elettrometro; schema di un elettrometro per misure di tensione (con considerazioni sui generatori di offset), e due schemi alternativi per le misure di corrente. Uso di un elettrometro come coulombimetro: schema circuitale e considerazioni sui generatori di offset; limi- tazioni sui tempi di misura. Schema di un cavo coassiale; conseguenze della presenza di R e C di perdita. Sche- ma di un cavo triassiale (con spiegazione del funzionamento del terminale di guardia).
- 7. PICOAMPEROMETRO E MICROOHMETRO: Funzione di un pico- amperòmetro; tecniche per misurare una resistenza con un micro-ohmetro (misura a due e a quattro contatti). NANOVOLTMETRO: Modello di amplificatore ideale con generatori di rumore; definizione di NF (noise figure) e dipendenza di NF dalla resistenza di sorgente.
- 8. NANOVOLTEMETRO: Formula di Friis per NF; temperatura di rumore. Nanovoltmetro (introduzione del filtro passabasso in ingresso; relazione tra la resistenza interna della sorgente ed il tempo di misura). Relazione fra NF, SNRin e SNRout. Minimizzazione di NF attraverso l'uso di un amplificatore a chopper.
- 9. SMU: Funzioni e caratteristiche di uno SMU; esempi di utilizzo dello strumento e spiegazione delle due modalità: ge- neratore di tensione misuratore di corrente/generatore di corrente misuratore di tensione. (Giuseppe Barillaro)
- 10. ANALIZZATORE DI SPETTRO: definizione di analizzatore di spettro e tipologie di analizzatore di spettro. Struttura di un analizzatore di spettro a scansione. Parametri di merito di un analizzatore di spettro a scansione (RBW resolution band width). Parametri di merito di un analizzatore di spettro a scansione (RBW, risoluzione frequenziale, sensibilità, selettivi- tà). Struttura di un analizzatore a banco di filtri. Struttura e analisi di un analizzatore dinamico di segnali (DSA). Definizione di THD (total harmonic distortion); due schemi alternativi per la misura di distorsioni. FREQUENZIMETRO e FASOMETRO: Misure di frequenza tramite contatori (periodimetro e frequenzimetro); ulteriore schema per la misura dello sfasamento tra due segnali isofrequenziali.
- 11. SINTESI DI FREQ: Sintesi di frequenza diretta e indiretta. Sintesi analogica diretta e sintesi digitale diretta; generatore di gruppi spettrali (schema). Funzionamento del phase jumper/tuning word. Sintesi di frequenza diretta e indiretta. Sintesi analogica diretta e sintesi digitale diretta; generatore di gruppi spettrali (schema). Funzionamento del phase jumper/tuning word.
- 12. LABORATORIO: Utilizzo dei principali strumenti di misura per la caratterizazzioen dei dispositivi e circuiti.

Bibliografia e materiale didattico

B. Neri, G. Basso, "Appunti di Strumentazione Elettronica", Arnus University Books, Pisa, 2011. D. Buchla, W. McLachlan, "Applied Electronic Instrumentation and Measurement", Prentice Hall, 1992.

Dispense, esercizi e materiali diversi distribuiti tramite il sito del corso (servizio e-learning https://elearn.ing.unipi.it/).

Indicazioni per non frequentanti

Nessuna

Modalità d'esame

Prova orale, che consiste in un colloquio tra il candidato e il docente, o anche tra il candidato e altri collaboratori del docente titolare. Durante la prova orale potrà essere richiesto al candidato di risolvere anche problemi/esercizi scritti, davanti al docente o in separata sede (come puó accadere quando si danno al candidato alcuni minuti durante i quali si sposta su un tavolo vicino e l'interrogazione del docente prosegue con altri candidati).

Verranno inoltre valutate le relazioni relative alle esercitazioni sperimentali effettuate in laboratorio dal candidato.

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Altri riferimenti web

nessuna

Note

Nessuna

Ultimo aggiornamento 19/07/2021 12:21

3/3