

#### Sistema centralizzato di iscrizione agli esami Syllabus

## Università di Pisa Physics of sound

#### **MARCO STANISLAO SOZZI**

Academic year 2022/23
Course FISICA
Code 408BB
Credits 6

Modules Area Type Hours Teacher(s)

FISICA DEL SUONO FIS/07 LEZIONI 36 MARCO STANISLAO

SOZZI

#### Obiettivi di apprendimento

#### Conoscenze

Lo studente potrà acquisire conoscenze relative alla descrizione fisica di numerosi aspetti legati alla produzione, trasmissione, fruizione ed elaborazione del suono, con particolare enfasi sull'unità della fisica e le analogie con la descrizione di altri fenomeni.

#### Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà effettuata mediante colloquio con lo studente sugli argomenti discussi durante il corso.

#### Capacità

Al termine del corso lo studente avrà acquisito le basi dell'acustica fisica e la capacità di cogliere aspetti unitari della descrizione fisica dei fenomeni.

#### Modalità di verifica delle capacità

Lo studente potrà opzionalmente preparare una breve presentazione di approfondimento su un argomento discusso durante il corso.

#### Comportamenti

Lo studente potrà acquisire sensibilità all'unità della descrizione fisica dei fenomeni.

#### Modalità di verifica dei comportamenti

Non è prevista la verifica del fatto che lo studente sia sensibilizzato a cogliere l'unità della fisica. Si tratta di un obiettivo auspicabile al termine dell'intero corso di laurea magistrale in fisica.

#### Prerequisiti (conoscenze iniziali)

Fondamenti di fisica classica, analisi matematica.

### Programma (contenuti dell'insegnamento)

Il programma copre un vasto numero di argomenti in un tempo limitato, e viene adattato annualmente agli interessi specifici degli studenti.
Oscillazioni, combinazione di moti armonici, spettri, cenni ad effetti di non-linearità. Oscillatori meccanici, modi normali, impedenza meccanica.
Corda vibrante, strumenti musicali a corda, pianoforte, chitarra. Strumenti ad arco. Cenni a barre vibranti e relativi strumenti musicali.
Membrane e tamburi.

Canne vibranti, strumenti a fiato. La voce umana. Propagazione del suono.

Fisiologia acustica, percezione del suono, illusioni acustiche.

Scale musicali. Sintesi del suono.

Campionamento, digitizzazione, elaborazione digitale e compressione del suono, il formato MP3.

#### Bibliografia e materiale didattico

Kinsler et al. - Fundamentals of acoustics Fletcher, Rossing -The physics of musical instruments Roederer - Introduction to the physics and psychophysics of music Watkinson - The art of digital audio



### Sistema centralizzato di iscrizione agli esami Syllabus

Data l'eterogeneità degli argomenti trattati, verranno forniti riferimenti per l'approfondimento.

# Indicazioni per non frequentanti Contattare il docente via e-mail.

#### Modalità d'esame

L'esame consiste in un colloquio, eventualmente integrato dalla discussione di un argomento a scelta dello studente concordato in precedenza con il docente.

Ultimo aggiornamento 29/07/2022 10:40

2/2