

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

METODI NUMERICI PER CATENE DI MARKOV

BEATRICE MEINI

Academic year 2022/23

Course MATEMATICA

Code 148AA

Credits 6

Modules Area Type Hours Teacher(s)
METODI NUMERICI PER MAT/08 LEZIONI 42 BEATRICE MEINI

CATENE DI MARKOV/a

Obiettivi di apprendimento

Conoscenze

Lo studente che ha superato l'esame con successo ha acquisito conoscenze in merito a questioni computazionali e applicative legate a catene di Markov e teoria delle code. In particolare, e' in grado di applicare algoritmi specifici e avanzati per la risoluzione numerica di catene di Markov

Modalità di verifica delle conoscenze

La verifica delle conoscenze verra' effettuata durante l'esame orale finale

Capacità

Al termine del corso lo studente sara' in grado di risolvere numericamente problemi computazionali legati a matrici non negative e catene di Markov

Modalità di verifica delle capacità

Nell'esame orale in forma di seminario, allo studente viene assegnato un argomento non affrontato nel corso, la cui comprensione richiede le capacita' acquisite durante il corso. Nell'esame in forma di orale classico, vengono fatte domande allo studente relative ai contenuti del corso.

Comportamenti

Lo studente acquisira' l'autonomia di affrontare problemi computazionali legati a matrici non negative e catene di Markov

Modalità di verifica dei comportamenti

Nell'esame sotto forma di seminario lo studente affrontera' un agomento non trattato durante il corso. Nell'esame in forma di orale classico possono essere fatte domande specifiche per verificare l'autonomia

Prerequisiti (conoscenze iniziali)

Nozioni elementari di calcolo delle probabilita', algebra lineare e analisi numerica

Programma (contenuti dell'insegnamento)

Richiami sulle catene di Markov, catene di Markov discrete, matrice di transizione, classificazione degli stati, distribuzione stazionaria. Proprieta' delle matrici non negative, teorema di Perron-Frobenius, M-matrici.

Metodi diretti e iterativi per catene di Markov finite.

Modelli di teoria delle code, problemi di tipo M/G/1 e G/M/1, processi Quasi-Birth-Death (QBD), struttura delle matrici di transizione. Caso con numero di stati finito e infinito.

Rappresentazione funzionale di matrici di transizione infinite con struttura M/G/1, G/M/1 e QBD. Algebra di Wiener, fattorizzazioni di Wiener-Hopf e equazioni di matrici. La formula di Ramaswami.

Metodi numerici per catene di Markov infinite. Metodi di iterazione funzionale, metodi di riduzione ciclica, metodi di

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

interpolazione. Tecniche di accelerazione.

Bibliografia e materiale didattico

D.A. Bini, G. Latouche, B. Meini, Numerical Methods for Structured Markov Chains, Oxford University Press 2005; G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Stochastic Modeling, SIAM 1999; W.J. Stewart, Introduction to the Numerical Solution of Markov Chains. Princeton University Press, 1994.

Modalità d'esame

La verifica avviene mediante esame orale. Lo studente puo' scegliere di effettuare:

- 1. esame orale, con interrogazione sugli argomenti presentati durante corso oppure
- 2. esame sotto forma di seminario, con argomenti legati ai contenuti del corso e non affrontati durante il corso.

Ultimo aggiornamento 19/08/2022 16:53

2/2