Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa Teoria dei nodi a

PAOLO LISCA

Anno accademico 2022/23
CdS MATEMATICA
Codice 746AA
CFU 6

ModuliSettore/iTipoOreDocente/iTEORIA DEI NODI AMAT/03LEZIONI42PAOLO LISCA

Obiettivi di apprendimento

Conoscenze

Al termine del corso lo studente avrà acquisito le nozioni teoriche di base della teoria dei nodi classica.

Modalità di verifica delle conoscenze

L'acquisizione delle conoscenze sarà verificata tramite domande dirette poste durante un esame orale.

Capacità

Al termine del corso lo studente saprà usare i diagrammi per calcolare gli invarianti più comuni.

Modalità di verifica delle capacità

L'acquisizione delle capacità sarà verificata con opportune domande poste durante un esame orale.

Comportamenti

Al termine del corso lo studente saprà affrontare e risolvere semplici problemi di teoria dei nodi.

Modalità di verifica dei comportamenti

L'acquisizione delle competenze sarà verificata chiedendo allo studente di risolvere semplici problemi durante un esame orale.

Prerequisiti (conoscenze iniziali)

Elementi di topologia algebrica (gruppo fondamentale e rivestimenti, omologia). Classificazione delle superfici. Algebra dei polinomi.

Corequisiti

Nessuno

Prerequisiti per studi successivi

Nessuno

Indicazioni metodologiche

Metodo di insegnamento

· Lezioni frontali

Frequenza: consigliata

Programma (contenuti dell'insegnamento)

Nodi lisci, lineari a tratti e selvaggi. Equivalenza di link. Diagrammi. Teorema di Reidemeister, primi invarianti di nodi e link. Crossing number, unknotting number. Link alternanti, torici, pretzel e razionali. Nodi chirali e invertibili. Numeri di allacciamento. Superfici e forme di Seifert.

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Genere tridimensionale. Polinomio di Alexander, determinante, segnature di Tristram-Levine. Trecce e teorema di Alexander. Polinomio di Alexander-Conway, bracket di Kauffman, polinomio di Jones.

A discrezione del docente e tempo permettendo, verranno poi trattati alcuni dei seguenti argomenti:

Nodi satellite. Decomposizione in primi. Gruppo fondamentale. Presentazione di Wirtinger. Colorazioni. Nodi somme simmetriche, ribbon e slice. Genere quadridimensionale. Congettura slice-ribbon. Gruppi di concordanza. Rivestimenti ciclici, ramificati e non. Ideali e polinomi di Alexander. Calcolo di Fox. Gruppi delle trecce. Teorema di Markov.

Bibliografia e materiale didattico

Burde-Zieschang-Heusener - Knots
Crowell-Fox - Introduction to knot theory
Lickorish – An introduction to knot theory
Livingston - Knot theory
Murasugi - Knot theory and its applications
Rolfsen – Knots and links
Sossinsky-Prasolov – Knots, links, braids and 3-manifolds
Cromwell - Knots and links.

Indicazioni per non frequentanti

Nessuna

Modalità d'esame

Esame orale

Stage e tirocini

Nessuno

Ultimo aggiornamento 29/07/2022 11:31