

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA SISTEMI SUBACQUEI

RICCARDO COSTANZI

Academic year 2022/23

Course INGEGNERIA ROBOTICA E

DELL'AUTOMAZIONE

Code 280II Credits 6

Modules Area Type Hours Teacher(s)

SISTEMI SUBACQUEI ING-INF/04 LEZIONI 60 RICCARDO COSTANZI ANDREA MUNAFO'

Obiettivi di apprendimento

Conoscenze

Lo studente acquisirà conoscenze riguardo gli strumenti ed i sensori per l'esplorazione geofisica in ambiente subacqueo, i rilievi del fondale e dei sedimenti marini, le misure nella colonna d'acqua. Lo studente acquisira' inoltre conoscenze su come tali strumenti possono essere operati remotamente o in modalità autonoma utilizzando veicoli e robot subacquei, e sui criteri e le metodologie di dimensionamento e progetto di robot subacquei che rispondano alle esigenze di esplorazione e misura.

Modalità di verifica delle conoscenze

L'accertamento delle conoscenze avviene attraverso discussione in sede di esame.

Capacità

Al termine del corso lo studente sarà capace:

- di descrivere qualitativamente la propagazione di segnali acustici in base alle condizioni oceanografiche in situ;
- di selezionare un simulatore di propagazione acustica per la predizione numerica del campo acustico in mare;
- di utilizzare le equazioni del sonar per dimensionare la portata di un sistema di misura acustico;
- di determinare la risoluzione di un sistema di misura acustico sulla base della frequenza e delle condizioni ambientali in situ;
- di interpretare i dati di strumenti acustici per l'esplorazione del fondale (ecoscandaglio a fasce, sonar a scansione laterale, profilatori sismici);
- di descrivere tramite opportuni strumenti analitici i modelli dinamici di un robot suacqueo, e del suo sistema di guida, navigazione e controllo;
- di descrivere e dimensionare i sensori per la navigazione subacquea (sistemi a linea di base lunga, corta, ultra corta; correntometri a effetto doppler);
- di descrivere le caratteristiche della principale sensoristica oceanografica (CTD, sonde multiparametriche) e di bordo utilizzata in robot subacquei, nonchè il contesto e i limiti operativi di ciascun sensore.

Modalità di verifica delle capacità

L'accertamento delle capacità avviene attraverso discussione in sede di esame.

Comportamenti

Lo studente avrà acquisito la capacità di pianificare, condurre e

interpretare i risultati di sperimentazione geofisica in mare, con la necessaria consapevolezza delle problematiche, dei limiti fisici e dei necessari compromessi nelle prestazioni dovuti alla complessità ed ai vincoli della sperimentazione in ambito marino.

Lo studente avrà sviluppato un approccio razionale e metodologicamente motivato alla scelta, configurazione ed impiego della strumentazione oceanografica.

Modalità di verifica dei comportamenti

L'accertamento dei comportamenti avviene attraverso discussione di casi di studio in sede di esame.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Prerequisiti (conoscenze iniziali)

- Fisica della propagazione delle onde (modello ottico)
- Teoria dei sistemi dinamici e elaborazione dei segnali
- · Probabilità, processi stocastici

Indicazioni metodologiche

L'insegnamento prevede:

- · Lezioni frontali con slide, notebooks e filmati preparati dal docente, e distribuiti all'inizio dell'insegnamento;
- · Discussioni collettive di casi di studio:
- · Seminari di ricercatori ospiti su tematiche specifiche.

Programma (contenuti dell'insegnamento)

- Elementi di oceanografia e propagazione acustica: la velocità del suono e la variabilità delle condizioni oceanografiche, strumeti di misura oceanografica;
- Propagazione acustica attraverso la teoria dei raggi: interferenza e attenuazione; rumore ambiente e riflessione diffusa; l'equazione del sonar e il compromesso portata-risoluzione.
- L'equazione delle onde: equazione di Helmholtz, funzione di Green.
- · Sistemi acustici per l'esplorazione del fondale: ecoscandagli, ecoscandagli a fasci, sonar a scansione laterale, profilatori sismici.
- Robotica marina e sistemi autonomi: Remotely Operated Vehicles (ROVs); Autonomous Underwater Vehicles (AUVs); glider oceanografici; Autonomous Surface Vehicles (ASV).
- Modellistica cinematica e dinamica di robot marini; modelli dinamici a ridotta complessità; sistemi di guida, navigazione e controllo; localizzazione acustica (LBL, SBL, USBL) e sistemi di navigazione di bordo (ADCP/DVL).
- · Pianificazione e analisi di missione.

Bibliografia e materiale didattico

Letture consigliate:

- J.M. Hovem: "Marine Acoustics", Penisula Publishing, 2012;
- X. Lurton: "Introduction to underwater acoustics", Springer, 2002;
- P. Blondel: "The Handbook of side scan sonar", Springer, 2009;
- T. Fossen: "Handbook of Marine Craft Hydrodynamics and Motion Control", Wiley, 2009;
- · G. Antonelli: "Underwater Robots", Springer, 2006;
- R.H. Stewart: "Introduction to Physical Oceanography", University of Texas, http://oceanworld.tamu.edu/ocean410/ocng410_text_book.html

Indicazioni per non frequentanti

Nessuna

Modalità d'esame

La modalità di esame è orale.

Nel corso dell'esame allo studente è richiesto di discutere con la commissione un caso di studio di una operazione in mare (e.g., ricerca e salvataggio, manutenzione di siti off-shore, mappatura del sedimento, etc.). Lo studente deve essere in grado di giustificare tecnicamente ogni passaggio dell'operazione pianificata, dalla selezione degli strumenti di misura alla loro installazione a bordo di robot marini ed alle procedure di operazione. Lo studente deve dimostrare la conoscenza delle metodologie e delle formulazioni analitiche che giustificano le suddette scelte tecniche.

Note

Nessuna

Ultimo aggiornamento 09/02/2023 11:33