Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

INGEGNERIA DEL SOFTWARE

MARIO GIOVANNI COSIMO ANTONIO CIMINO

Anno accademico 2022/23

CdS INGEGNERIA INFORMATICA

Codice 374II CFU 6

Moduli Settore/i Tipo Ore Docente/i
INGEGNERIA DEL ING-INF/05 LEZIONI 60 MARIO GIOVANNI

SOFTWARE COSIMO ANTONIO

CIMINO

Obiettivi di apprendimento

Conoscenze

L'insegnamento ha l'obiettivo di fornire le conoscenze su UML e lo Unified Process

Modalità di verifica delle conoscenze

Esame orale basato sulla discussione di un progetto.

Capacita

L'insegnamento ha l'obiettivo di sviluppare le capacità di analisi e progetto del software.

Modalità di verifica delle capacità

Esame orale basato sulla discussione di un progetto.

Comportamenti

L'insegnamento ha l'obiettivo di sensibilizzare gli studenti ad un approccio rigoroso all'ingegneria del software.

Modalità di verifica dei comportamenti

Discussione di un progetto alla prova di esame.

Programma (contenuti dell'insegnamento)

Metodi di sviluppo del software: differenze tra il classico modello a cascata ed i modelli iterativi ed incrementali. Introduzione al metodo Unified Process (UP). Workflow e fasi in UP. Workflow Requisiti: modello dei requisiti e modello dei casi d'uso. Metodi di individuazione dei requisiti funzionali e non funzionali. Metodi di individuazione degli attori e dei casi d'uso. Diagramma dei casi d'uso e specifica dei casi d'uso. Modello dei casi d'uso: relazioni di inclusione e di estensione, gerarchia tra i casi d'uso e tra gli attori. Introduzione al workflow Analisi. Individuazione delle classi e degli oggetti di analisi. Metodi di individuazione delle classi di analisi. Relazioni tra classi di analisi: associazione, dipendenza, ereditarieta'. Definizione di package. Package annidati. Dipendenze tra package. Generalizzazione tra package. Introduzione alla realizzazione dei casi d'uso. Diagrammi di interazione: linee di vita e messaggi. Diagrammi di sequenza: frammenti combinati ed operatori, occorrenze di interazione e continuazioni. Diagrammi di attivita': nodi azione, nodi controllo e nodi oggetto. Semantica dell'attivita', connettori, regioni di attivita' interrompibili, nodi di espansione. Diagramma Interaction overview. Esempio di applicazione del workflow Analisi. Diagrammi delle classi e realizzazioni dei casi d'uso. Alcune realizzazioni di casi d'uso. Introduzione al workflow Progetto. Classi di progetto. Relazioni di aggregazione e composizione. Trasformazione delle relazioni di associazione in relazioni di aggregazione dei casi d'uso nel workflow progetto. Classi attive. Diagrammi temporali. Macchine a stati. Stati composti. Stati di una sottomacchina. Workflow Implementazione. Modello di dislocazione. Svolgimento di un progetto didattico in architettura web multilivello.

Bibliografia e materiale didattico

J. Arlow, I. Neustadt, UML 2 and the Unified Process, Pearson Education, 2005 [excerpt];

Modalità d'esame

Sistema centralizzato di iscrizione agli esami Programma

UNIVERSITÀ DI PISA Presentazione e discussione di un progetto software.

Pagina web del corso http://docenti.ing.unipi.it/m.cimino/isw/

Ultimo aggiornamento 28/09/2022 00:15

2/2