

Sistema centralizzato di iscrizione agli esami Syllabus

2022/23

Università di Pisa

PERFORMANCE EVALUATION OF COMPUTER SYSTEMS AND NETWORKS

9

GIOVANNI STEA

Academic year

Course COMPUTER ENGINEERING

Code 592II

Credits

Modules PERFORMANCE EVALUATION OF COMPUTER SYSTEMS

AND NETWORKS

Area ING-INF/05 Type LEZIONI Hours 90 Teacher(s) GIOVANNI STEA ANTONIO VIRDIS

Obiettivi di apprendimento

Conoscenze

Gli studenti dovranno conoscere

- fondamenti di calcolo delle probabbilita', incluse le proprieta' di alcune distribuzioni comuni
- fondamenti di statistica, soprattutto la differenza tra campione e popolazione ed il concetto di intervallo di fiducia
- aspetti fondamentali della teoria della simulazione: come progettare un simulatore, quali sono le varie strutture dati, come generare numeri casuali, come portare a termine uno studio simulativo ben fatto, come gestire i dati in uscita.
- aspetti fondamentali della modellazione analitica tramite catene di Markov

Modalità di verifica delle conoscenze

Le conoscenze sopra indicate verranno verificate tramite esame orale.

Capacità

Gli studenti dovranno essere in grado di:

- padroneggiare tecniche di modellazione analitiche e simulative di sistemi informatici
- · calcolare probabilita'
- inferire proprieta' di campioni (ad esempio, la distribuzione) ed associare misure di fiducia ai campioni
- estrarre le informazioni salienti da un campione e presentarle nel modo piu' efficace
- seguire il metodo scientifico per capire perche' le prestazioni di un sistema variano con alcuni fattori.

Modalità di verifica delle capacità

La padronanza del calcolo delle probabilita' e delle tecniche analitiche di modellazione sara' verificata attraverso esercizi scritti, che richiedono che uno studente modelli in modo appropriato una situzione descritta, che ricavi misure di prestazioni dai dati di ingresso, e che spieghi i risultati.

La padronanza nella simulazione sara' verificata analizzando il codice ed i risultati di un progetto di gruppo, che consiste nella modellazione e simulazione di un sistema semplice, e nell'analisi delle prestazioni di quest'ultimo.

La padronanza delle tecniche di analisi statistica verra' verificata attraverso esercizi individuali dati agli studenti durante le ore di esercitazione.

Comportamenti

Gli studenti dovranno essere in grado di

- creare un modello di un sistema dalle sue specifiche o dall'osservazione di quest'ultimo, estraendone le caratteristiche salienti.
- capire le cause di variazione delle prestazioni di un sistema, e di progettare scenari che confermano le loro intuizioni.
- predire il funzionamento o le prestazioni di un sistema dal modello di quest'ultimo, e verificare se le predizioni sono corrette.

Modalità di verifica dei comportamenti

I comportamenti sopra indicati verranno verificati tramite un progetto di gruppo dato agli studenti, nel quale dovranno analizzare e spiegare le prestazioni di un sistema come funzione di alcuni fattori, modellandolo e simulandolo. La valutazione del progetto vertera' non solo sulla

A DICALIANTS

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

correttezza del codice, ma anche sulla correttezza dell'approccio, la coerenza degli scenari utilizzati, il rigore scientifico e la chiarezza di presentazione.

Prerequisiti (conoscenze iniziali)

Gli studenti devono possedere conoscenze iniziali dettagliate di:

- · calcolo: funzioni, limiti, derivate, integrali, serie.
- programmazione ad oggetti, incluso il linguaggio C++.

Indicazioni metodologiche

- Lezioni frontali. La parte sulla simulazione ha delle slide di supporto
- Esercitazioni tenute settimanalmente. Durante le ore di esercitazione, gli studenti possono usare il proprio laptop o il PC del laboratorio per svolgere lavoro individuale.
- Il corso ha una apgina web (vedere sotto) che contiene tutto il materiale didattico
- C'e' un co-docente, che svolge le esercitazioni, alcune lezioni, e revisiona progetti
- I docenti ricevono settimanalmente gli studenti, e gli studenti possono interagire con i docenti via email.
- · e' richiesto un progetto di gruppo
- · Il corso e' tenuto in Inglese.

Programma (contenuti dell'insegnamento)

- Probability theory and statistics (~30 h):
 - Fundamental definitions and theorems on probability. Uniform probability model. Discrete and continuous random variables. Notable RV distributions (exponential, uniform, Poissonian, normal, binomial, chi-square, student-t etc.).
 Central limit theorem.
 - Sample and population: estimators and confidence intervals. Data analysis and summarization. Model fitting, experiment design.
- Simulation (~20 h):
 - Principles of discrete event simulation: events, event queues, random number generation, structure of a simulator software.
 - Description of the general-purpose OMNET++ simulation framework. Hands-on experiments with the OMNET++ framework.
 - Simulation workflow: system modeling, experiment planning, factor reduction, independent replications, transient and steady-state behavior, output data analysis, experiment automation.
- Analytical System modeling and capacity planning (~30 h):
 - o Analysis techniques, workload characterization, Single-queue systems, queueing networks, mean value analysis
 - · Case studies in systems modeling: web servers, data centers, database services, networks

Bibliografia e materiale didattico

La pagina web del corso contiene gran parte del materiale necessario alla preparazione degli esami.

Testi raccomandati:

- S.M. Ross "Introduction to Probability and Statistics for Engineers and Computer Scientists", Elsevier
- R. Jain "The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling"
- L. Kleinrock, Queueing Systems, vol. 1, Wiley

Utili:

- J.Y. Le Boudec "Performance Evaluation of Computer and Communication Systems", EPFL
- D.A. Menascé et al. "Performance by Design", Prentice Hall
- A.M. Law, W.D. Kelton "Simulation Modeling and Analysis", McGraw-Hill
- S.M. Ross, "Introduction to Probability Models", Elsevier

Modalità d'esame

Gli studenti devono prima preparare e discutere un progetto di gruppo, su un argomento assegnato dai docenti. A seguire, ci sara' un esame scritto ed uno orale. L'esame scritto e' bloccante.

Modalita' di esame durante l'emergenza CoVid19

Fino al ripristino della normale operativita' dell'universita', gli esami si terranno in modalita' remota, e saranno organizzati esattamente nello stesso modo.

Ulteriori informazioni alla pagina del docente.

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA Ultimo aggiornamento 29/07/2022 11:11