

<u>Università di Pisa</u> Laboratory II

GIOVANNI MANZINI

Anno accademico	2023/24
CdS	COMPUTER SCIENCE
Codice	732AA
CFU	12

Moduli LABORATORIO II Settore/i INF/01 Tipo LEZIONI Ore 96 Docente/i GIOVANNI MANZINI

Learning outcomes

Knowledge

The student will acquire knowledge related to system programming in C, concurrent programming, use of Makefile's, Python scripting, Assembler programming.

Assessment criteria of knowledge

The knowledge acquired will be assessed using:

- Programming tests in class.
- Programming homeworks.
- Project.
- · Final oral exam.

The assessment criteria can be change because of Covid related restrictions.

Skills

The student will acquire skills in:

- Development of C programming language.
- · Design and evelopment of multithreading solutions in C.
- Development of Python Scripts.
- · Handling of inter process communications even involving different programming languages
- Development of ARM Assembler programs.

Assessment criteria of skills

Programming exercises at home and in class, final project.

Behaviors

At the end of the course students should be able to efficiently tackle complex tasks, possibily using concurrent programs.

Assessment criteria of behaviors

Final project and oral exam

Prerequisites

Good knowledge of at least one imperative language Knowlegde of elementary data structures: (sorted) arrays and lists, queues, stacks, trees, hash tables Knowledge of the man Linux/Unix shell commands.

Teaching methods

Delivery: frontal lectures in mixed mode (in person and online) Learning activities:

Sistema centralizzato di iscrizione agli esami Programma

<u>Università di Pisa</u>

- attending lectures
- individual study
- solving of programming exercises individually
- attending office hours with the assistants and professors
- Attendance: strongly advised but not mandatory.
- Teaching methods:
 - lectures with slides
 - programming exercises

Syllabus

C programming, including using pointers, strings, standard I/O libraries. C programming using system calls. GDB debugging and memroy check using valgrind. Using Makefile. Concurrent programming in C using processes and threads. Communication and sincronisation among processes and threads. ARM Assembler programming Python Scripting.

Bibliography

P. Deitel, H. Deitel. C: how to program. Pearson. Marc J. Rochkind. Advanced UNIX Programming 2nd Edition, Addison-Wesley Professional Computing Series, 2004.

Assessment methods

The exam will be held in two modalities:

- 1. Intermediate programming tests during the academic year, including homework and in-class tests, final simplified project, oral exam.
- 2. For the syudents who did not pass the intermediate evaluation: final project and oral exam.

Updated: 12/09/2023 21:27