

Università di Pisa

DISORDERED SYSTEMS OUT OF EQUILIBRIUM / SISTEMI DISORDINATI FUORI EQUILIBRIO

SIMONE CAPACCIOLI

Academic year 2023/24
Course FISICA
Code 309BB

Credits 9

Modules Area Type Hours Teacher(s)

SISTEMI DISORDINATI FIS/03 LEZIONI 54 SIMONE CAPACCIOLI

FUORI EQUILIBRIO

Obiettivi di apprendimento

Conoscenze

Il Corso è diviso in tre parti in cui si intende fornire conoscenze di base in:

- Descrizione ed interpretazione del disordine in liquidi, colloidi, vetri e polimeri.
- Dinamica e termodinamica degli stati di fuori equilibrio nella materia passiva e attiva.
- Tecniche sperimentali di uso corrente nello studio di struttura e dinamica di sistemi disordinati.

Modalità di verifica delle conoscenze

Le conoscenze saranno verificate tramite prova orale. Per chi fosse interessato le conoscenze generali del corso potranno essere anche valutate con prove in itinere e l'esame potrà essere completato alla fine del semestre con un seminario o un esame orale su argomenti a scelta concordati con il docente.

Capacità

Alla fine del Corso lo studente avra' acquisito capacita' di comprensione e di analisi di studi sperimentali, teorici e computazionali nel campo della fisica dei sistemi disordinati e fuori equilibrio.

Modalità di verifica delle capacità

Le lezioni sono svolte in modo quanto piu' interattivo possibile per verificare che gli studenti acquisiscano le capacita` tecniche e di logica necessarie alla comprensione dei principali aspetti della fisica dei sistemi disordinati e fuori-equilibrio.

Comportamenti

Sara acquisita capacita di analisi e di schematizzazione dei principali aspetti della fisica dei sistemi disordinati e fuori-equilibrio.

Modalità di verifica dei comportamenti

Lezioni interattive e prova orale finale.

Prerequisiti (conoscenze iniziali)

Conoscenze di base in Fisica della Materia e Fisica Statistica.

Indicazioni metodologiche

Lezioni frontali, ricevimenti, utilizzo di e-mail e del sito e-learning per comunicazioni e materiale didattico addizionale.

Programma (contenuti dell'insegnamento)

1. Dall'ordine al disordine

DICAL ANTIC

Sistema centralizzato di iscrizione agli esami

Syllabus

Università di Pisa

- · Ordine posizionale a lungo raggio non-periodico: guasi cristalli
- Disordine in sistemi atomici con ordine posizionale a lungo raggio (disordine cellulare)
 - Disordine sostituzionale: impurezze interstiziali e sostituzionali, vacanze
 - o Disordine orientazionale: cristalli plastici (e.g. fullerene)
- Disordine in sistemi atomici senza ordine posizionale a lungo raggio (disordine topologico)
 - · Elementi di base nei cristalli reali:
 - Dislocazioni e vettori di Burger,
 - Difetti interfacciali.
 - Stato liquido e solido amorfo
 - Funzioni di distribuzione a n-corpi, caso particolare di distribuzione a coppia, fattore di struttura statico
 - Liquidi atomici di sfere dure: cenni alla teoria di Percus-Yevick
- · Disordine in sistemi polimerici
 - · Conformazioni della catena polimerica lineare: analogia con il Random walk
 - o Rigidita' della catena: segmento di Kuhn
 - · Distribuzione delle dimensioni della catena polimerica lineare
 - · Energia libera della catena polimerica, elasticita' entropica
 - Funzione di distribuzione a coppia della catena polimerica: autosimilarita'

2. Dall'equilibrio al fuori equilibrio

- Stati metastabili sottoraffreddati e transizione vetrosa nei liquidi
 - · Funzione di Van Hove e suoi momenti
 - Dinamica microscopica e collettiva: effetto gabbia e proprieta' vibrazionali, rilassamento strutturale e locale, distribuzione di tempi di rilassamento, diffusione, viscoelasticita'
 - · Modelli elementari della transizione vetrosa:
 - Volume libero
 - Entropia configurazionale
- · Cenni sulla termodinamica di non-equilibrio
 - · Principio zero: temperatura fittizia dei vetri, rottura del teorema di fluttuazione-dissipazione
 - Secondo principio: uguaglianza di Jarzynski e teorema di fluttuazione di Crooks e loro test sperimentali in nanosistemi
- Dinamica della catena polimerica
 - · Catena corta: modello di Rouse
 - · Catena lunga: effetto degli aggrovigliamenti
 - Modello a tubo di Edwards
 - Moto di reptazione di De Gennes: argomenti di scala
- Cenni sugli stati di non-equilibrio nella materia attiva
 - Motori molecolari
 - o Batteri, nuotatori, sciami: moti collettivi emergenti e transizione vetrosa
- 3. Tecniche sperimentali: struttura e dinamica di sistemi disordinati
- Scattering da sistemi disordinati: generalità
 - · Sezioni d'urto di scattering, scattering coerente ed incoerente
 - o Fattore di struttura statico e dinamico, scattering elastico e anelastico
 - o Funzioni di correlazione spaziale, temporale e spazio-temporale
- Scattering di fotoni (raggi X e luce)
 - · Sorgenti di radiazione coerente (sincrotrone), spettrometri e rivelatori
 - o Struttura in sistemi disordinati: diffrazione di raggi X a largo e piccolo angolo
 - Dinamica in sistemi disordinati: scattering Brillouin e Raman, scattering anelastico di raggi X, spettroscopia di fotocorrelazione
- · Scattering di neutroni
 - Sorgenti di neutroni, e rivelatori: tipici layout sperimentali.
 - o Struttura in sistemi disordinati: diffrazione di neutroni a largo e piccolo angolo, confronto con i raggi X.
 - · Scattering anelastico di neutroni e spettroscopia: TAS, TOF, Backscattering, Spin-Echo

Bibliografia e materiale didattico

Disordine:

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

K.Binder, W. Kob, Glassy materials and disordered solids (World Scientific, Singapore, 2005)

Fenomeni di non equilibrio:

P.G. Debenedetti, *Metastable Liquids* (Princeton University Press, Princeton, 1996),
M. Rubinstein, R.H. Colby, *Polymer Physics* (Oxford University Press, Oxford, 2003)
D.J.Evans, D.J.Searles, S.R.Williams. *Fundamentals of Classical Statistical Thermodynamics: Dissipation, Relaxation and Fluctuation Theorems* (Wiley-VCH, Weinheim, 2016)

Tecniche di scattering:

D.S. Sivia, *Elementary Scattering Theory: For X-ray and Neutron Users* (Oxford University Press, 2011 J. A. Nielsen and D. McMorrow, *Elements of Modern X-ray Physics* (John Wiley & Sons, 2011)

Indicazioni per non frequentanti

Nessuna

Modalità d'esame

Esame finale orale attraverso colloquio tra il candidato e il docente anche in forma di domanda/risposta, sui vari argomenti trattati nel corso.

Pagina web del corso

https://elearning.df.unipi.it/enrol/index.php?id=311

Altri riferimenti web

https://elearning.df.unipi.it/enrol/index.php?id=311
309BB 23/24 - SISTEMI DISORDINATI FUORI EQUILIBRIO [WFI-LM] | Generale | Microsoft Teams
Registro Lezioni

Note

Presidente Commissione: Simone Capaccioli

Membro: Stefano Roddaro

Membri supplenti: Francesca Cella Zanacchi, Michele Alderighi

Ultimo aggiornamento 23/02/2024 13:05

3/3