Sistema centralizzato di iscrizione agli esami Programma

UNIVERSITÀ DI PISA FENOMENI BIOELETTRICI

ALESSANDRO TOGNETTI

Anno accademico 2023/24
CdS INGEGNERIA BIOMEDICA
Codice 480II
CFU 12

Moduli	Settore/i	Tipo	Ore	Docente/i
FENOMENI BIOELETTRICI	ING-INF/06	LEZIONI	60	ALESSANDRO TOGNETTI
I				
FENOMENI BIOELETTRICI	ING-INF/06	LEZIONI	60	ALESSANDRO TOGNETTI
II .				

Obiettivi di apprendimento

Conoscenze

Approccio quantitativo alla Bioelettricità. Studio accurato di fenomeni di membrana nei tessuti eccitabili, meccanismi di generazione/propagazione dei potenziali di azione. Per ultimo, vengono modellate, in relazione all'elettrofisiologia dei tessuti eccitabili, le tecniche diagnostiche e terapeutiche basate sull'utilizzo e l'analisi di segnali bioelettrici.

Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà oggetto della valutazione della prova orale, in cui lo studente dovrà dimostrare un'approfondita conoscenza dei concetti trattati durante il corso e la capacità di analizzare problemi sia di tipo pratico sia di tipo applicativo.

Capacità

Lo studente sarà in grado di formulare trattazioni accurate legate ad aspetti bioelettrici attraverso la concezione di modelli matematici semplificati e la soluzione delle equazioni relative in forma analitica e, laddove necessario, attraverso codici numerici disponibili attraverso Matlab.

Modalità di verifica delle capacità

Sia durante le lezioni sia in sede di esame finale sono proposti allo studente esercizi e quesiti che richiedono l'utilizzo delle capacità acquisite.

Comportamenti

Lo studente sarà in grado di modellare le principali sorgenti bioelettriche, di affrontare il problema diretto (potenziale elettrico generato dalle sorgenti bioeletriche) e inverso (inferenza della sorgente ottenuta dalla misura di biopotenziali) con applicazioni a casi di monitoraggio (ECG, EMG) e stimolazione (FES, pacing, defribillazione).

Modalità di verifica dei comportamenti

La verifica dei comportamenti avviene attraverso la discussione nella prova orale.

Prerequisiti (conoscenze iniziali)

Conoscenze di base di analisi matematica, chimica, calcolo numerico, fisica (in particolare termodinamica e elettrostatica).

Indicazioni metodologiche

Programma (contenuti dell'insegnamento)

FENOMENI BIOLETRICI 1

Introduzione ai fenomeni bioelettrici: tessuti elettricamente eccitabili, problema diretto, problema inverso. Analisi vettoriale (gradiente, divergenza, laplaciano e loro applicazione); equazioni di Laplace e di Poisson Sorgenti bioelettriche elementari e potenziali associati (monopolo e dipolo di corrente)

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Modellazione del potenziale di azione del neurone (modello membrana cellulare a riposo, modello di Hodgkin e Huxley)

Propagazione del potenziale di azione

Stimolazione elettrica del tessuto nervoso (FES)

Modelli fenomenologici del potenziale di azione (Semplificazioni del modello di Hodgkin e Huxley, sistemi dinamici)

FENOMENI 2

Introduzione ai fenomeni bioelettrici associati all'attività cardiaca

Modello di generazione dell'ECG in funzione della densità di sorgente di corrente e della densità di dipolo

Bidominio cardiaco e condizioni al contorno (bidominio accoppiato, non accoppiato e isolato con riduzione al monodominio)

Metodo del vettore delle derivazioni e triangolo di Einthoven

Applicazioni: Principi di diagnosi ECG e pacing cardiaco

Modellazione del potenziale di azione cardiaco tramite modelli biofisici e fenomenologici

Propagazione del potenziale di azione cardiaco e calcolo dei potenziali extracellulari (pseudo-ecg)

Introduzione alla modellazione della attività elettrica del muscolo

Modello di Fuglevand (modelli di: singola fibra, unità motoria tramite metodo degli strati isopotenziali, intero muscolo), Modello di twitch force

Bibliografia e materiale didattico

Libro: Barr, Roger C; Plonsey, Robert, Bioelectricity: a quantitative approach, Springer 2007

Alla fine di ogni lezione il docente condivide i contenuti proiettati sulla lavagna tramite file pdf (disponibili su Teams).

I file Matlab associati alle esercitazioni pratiche sono disponibili su Teams.

Indicazioni per non frequentanti

Non sussistono per gli studenti non frequentanti variazioni di programma, né di bibliografia consigliata, né di modalità d'esame.

Modalità d'esame

L'esame è composto da due prove orali, la prima in itinere (prima parte del corso) e la seconda conclusiva (seconda parte del corso) che prevede l'attribuzione del voto come media delle votazioni conseguite nelle due prove medesime. E' prevista la somministrazione di un questionario pre-orale nel quale lo studente dovrà risolvere alcuni problemi teorico/pratici.

Per la sola **seconda parte del corso** è previsto un **lavoro progettuale opzionale** (il progetto sostituisce il questionario pre-orale) Le prove orali sono rivolte a:

- 1. Accertare la comprensione e la capacità di esposizione in relazione a argomenti di contenuto vasto e articolato.
- Verificare, attraverso l'esecuzione di calcoli specifici la capacità di analizzare contenuti in forma quantitativa e valutare la congruità
 dei risultati ottenuti. Questo anche attraverso l'accesso a database via motori di ricerca effettuato in presenza del docente durante
 la prova d'esame.
- Valutare la capacità dello studente di affrontare problemi a lui posti dal docente che prevedano l'integrazione di parti diverse del programma.

Ultimo aggiornamento 01/08/2023 17:52

2/2