

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA CRISTALLOCHIMICA

MARCO PASERO

Academic year 2023/24

Course SCIENZE E TECNOLOGIE

GEOLOGICHE

Code 036DD

Credits 6

ModulesAreaTypeHoursTeacher(s)CRISTALLOCHIMICAGEO/06LEZIONI60MARCO PASERO

Obiettivi di apprendimento

Conoscenze

Acquisizione degli strumenti per consentire la "lettura" di un minerale o di una famiglia di minerali a partire dalle loro caratteristiche cristallochimiche, e comprensione delle relazioni tra proprietà chimiche, fisiche e cristallografiche e l'ambiente geologico in cui il minerale si è formato.

Comprensione delle relazioni tra le trasformazioni mineralogiche (transizioni di fase, femonemi di politipismo) e l'ambiente di formazione ed evidenziazione della correlazione tra caratteristiche cristallochimiche e variazioni delle condizioni termodinamiche.

Modalità di verifica delle conoscenze

L'esame, in forma orale, ha lo scopo di verificare la capacità dello studente di descrivere gli argomenti principali presentati durante il corso (e.g., caratteristiche cristallochimiche di un gruppo di minerali, diagrammi di fase, effetto di P e T sulle transizioni di fase, ecc.)

Capacità

Al termine del corso lo studente sarà in grado di capire il ruolo della cristallochimica mineralogica come uno srumento importante per comprendere problematiche geologiche.

Modalità di verifica delle capacità

Lo studente dovrà preparare, come parte della prova d'esame, una breve relazione orale nella quale dimostri di saper organizzare il materiale e di presentarlo in modo chiaro e scientificamente corretto.

Prerequisiti (conoscenze iniziali)

Si presume che gli studenti di un corso di laurea magistrale abbiano una buona preparazione di chimica e di mineralogia. Insegnamento offerto in lingua Inglese se presenti studenti stranieri.

Lo studente è invitato a verificare l'esistenza di eventuali propedeuticità consultando il Regolamento del Corso di studi relativo al proprio anno di immatricolazione. Un esame sostenuto in violazione delle regole di propedeuticità è nullo (Regolamento didattico d'Ateneo, art. 24, comma 3)

Programma (contenuti dell'insegnamento)

Cristallochimica generale. Il legame chimico. Elettronegatività secondo Pauling e secondo Mulliken. Legame ionico in molecole. Cristalli ionici. Energia coesiva: termini coulombiani e termini repulsivi di Born. Raggi ionici: raggi univalenti e raggi cristallini. Variazione della distanza di legame con la coordinazione. Impacchettamento compatto di sfere e strutture tipo A, B, C. Poliedri di coordinazione. Descrizione di una struttura cristallina: esempi. Le regole di Pauling (criteri di stabilità delle strutture ioniche): esempi. Raggi ionici empirici. Estensione della II regola di Pauling: correlazione tra forza di legame e distanza di legame. Cristallochimica speciale. Strutture a impacchettamento compatto di ioni ossigeno: strutture AX, AX2, A2X3. Strutture AB2O4 (spinelli). Teoria del campo cristallino. Energie di stabilizzazione in campo ottaedrico e in campo tetraedrico. Effetto Jahn-Teller. Polimorfismo e politipismo: aspetti termodinamici, aspetti strutturali. Esempi di polimorfismo. Struttura tipo olivina. Struttura tipo granato. Struttura tipo humite. Polisomatismo: definizione ed esempi. Strutture del composto Al2SiO5. Silicati a catena. Connessioni di catene tetraedriche ed ottaedriche: modalità diverse di connessione. Pirosseni, pirosseniodi, anfiboli, biopiriboli. Dagli inosilicati ai fillosilicati. Principali famiglie di fillosilicati. Politipismo nelle miche. Silicati a impalcatura tridimensionali di tetraedri. Feldspatoidi e zeoliti: caratteristiche strutturali e proprietà. Soluzioni solide ideali; soluzioni "regolari". Cristallochimica di alta temperatura; espansioni poliedriche. Cristallochimica di alta pressione; compressibilità poliedriche. Pressione, temperatura e composizione come variabili strutturali 'analoghe'. Limiti assoluti per l'estensione e la compressione dei legami. Caso di Si-O. Mineralogia del mantello. Informazioni di carattere geofisico e petrologico. Informazioni di carattere cristallografico: isostrutturalità di silicati e germanati. Studi di altissima pressione. Strutture

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

hollandite. Trasformazioni di fase nel mantello. Ruolo del silicio in coordinazione ottaedrica.

Bibliografia e materiale didattico

Nessuno dei testi elencati è obbligatorio. Lo studente può scegliere diversi argomenti da ognuno di essi.

- Bloss F.D. (1971): Crystallography and crystal chemistry. Holt, Rinehart & Winston, New York (in particolare cap. 8 e 9).
- Carobbi G. (1971): Trattato di mineralogia. USES, Firenze (part. cap. 3).
- Papike J.J. & Cameron M. (1976): Crystal chemistry of silicate minerals of geophysical interest. Rev. Geophys. Space Phys., 14, 37-80.
- Hazen R.M. & Finger L.W. (1982): Comparative crystal chemistry. Wiley, New York (in particolare cap. 6-10).
- Papike J.J. (1987): Chemistry of rock-forming silicates: ortho, ring, and single-chain structures. Rev. Geophys., 25, 1483-1526.
- Papike J.J. (1988): Chemistry of rock-forming silicates: multiple-chain, sheet and framework structures. Rev. Geophys., 26, 407-444.
- McElhinny M.W. (ed.) (1979): The Earth: its origin, structure and evolution. Academic Press, London (in particolare cap. 1, 7 e 8).
- Griffen D.T. (1992): Silicate crystal chemistry. Oxford University Press, Oxford (in particolare cap. 1-8).

Modalità d'esame

Discussione di una breve relazione su un argomento correlato al corso e concordato individualmente con gli studenti, seguito da un esame orale con voto

Note

Commissione d'esame:

Presidente: Marco Pasero (GEO/06)

Due membri: Cristian Biagioni (GEO/06), Daniela Mauro (GEO/06)

Presidente supplente: Elena Bonaccorsi (GEO/06)

Due membri supplenti: Enrico Mugnaioli (GEO/06), Natale Perchiazzi (GEO/06)

Ultimo aggiornamento 22/09/2023 10:35