

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa Teoria dei sistemi

MATTEO BIANCHI

Anno accademico CdS Codice CFU 2016/17 INGEGNERIA DELL'ENERGIA 620II 6

 Moduli
 Settore/i
 Tipo
 Ore
 Docente/i

 TEORIA DEI SISTEMI
 ING-INF/04
 LEZIONI
 60
 MATTEO BIANCHI

Obiettivi di apprendimento

Conoscenze

Al termine del corso lo studente sarà posto in grado di:

- saper interpretare semplici modelli matematici di sistemi dinamici non lineari tempo continui e determinarne le caratteristiche fondamentali, soprattutto in termini di stabilità;
- saper porre, e interpretare, le specifiche di funzionamento di un sistema dinamico nelle diverse forme in cui esse possono venir descritte (attraverso una procedura di linearizzazione);
- conoscere le tecniche di analisi dei sistemi lineari nel dominio della frequenza (trasformata di Laplace, funzioni di trasferimento, diagrammi di Bode e Nyquist, luogo delle radici);
- saper progettare un regolatore per un sistema assegnato che realizzi date specifiche di stabilità pratica, precisione, prontezza

Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà oggetto della valutazione dell'elaborato scritto previsto all'inizio di ogni sessione d'esame. Saranno inoltre previste esercitazioni e ricevimenti collettivi per valutare il grado di acquisizione delle conoscenze.

Capacità

Al termine del corso lo studente avrà sviluppato le seguenti capacità:

- sarà in grado di applicare le conoscenze acquisite nell'ambito del corso per determinare le condizioni di equilibrio di un sistema a partire dal suo modello dinamico, linearizzare il sistema e di condurre l'analisi rigorosa delle proprietà di un sistema dinamico lineare, di determinarne i modi e di calcolarne analiticamente la risposta libera e forzata. Determinare ed interpretare la risposta al gradino
- sarà in grado interpretare criticamente e di esprimere specifiche statiche e dinamiche sulla risposta di un sistema in vincoli per luogo delle radici e diagramma di Bode;
 - sarà in grado di progettare la funzione di trasferimento di un controllore tale da soddisfare le specifiche assegnate;
- sarà in grado di utilizzare il tool Sisotool, app del software MATLAB, come supporto per lo sviluppo del controllore di un sistema dinamico lineare di tipo SISO;
- sarà in grado di utilizzare il software MATLAB per verificare il rispetto delle specifiche assegnate simulando la risposta del sistema in anello chiuso a segnali di ingresso canonici.

Modalità di verifica delle capacità

Durante le sessioni di laboratorio informatico saranno svolti piccoli progetti tesi al comprendere l'utilizzo del software Matlab e Sisotool ed a risolvere compiti di esami precedenti

Comportamenti

Lo studente sarà in grado di considerare sistemi dinamici - specialmente elettro-meccanici - in un'ottica di controllo e soddisfacimento delle capacità. Lo studente avrà le capacità basiche per interfacciarsi in ambito industriale con specifiche date di funzionamento richieste ai sistemi dinamici.

Modalità di verifica dei comportamenti

Durante le sessioni di laboratorio saranno valutati il grado di accuratezza e precisione delle attività svolte

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Prerequisiti (conoscenze iniziali)

- Matematica: equazioni differenziali, algebra delle matrici, nozioni di geometria;
- · Fisica: meccanica ed elettromagnetismo

Corequisiti

I pre-requisiti sono sufficienti

Prerequisiti per studi successivi

Questo corso costituisce un prerequisito per tutti gli insegnamenti delle Lauree magistrali in Ingegneria i quali fanno riferimento al settore scientifico disciplinare (SSD) ING INF/04.

Indicazioni metodologiche

- Le lezioni si svolgono come lezioni frontali, con ausilio della lavagna per la derivazione delle equazioni e/o di lucidi
- Le esercitazioni si svolgono in laboratorio utilizzando i PC delle aule informatiche;
- Il materiale didattico, le esercitazioni, test, il registro delle lezioni sono reperibili dalla pagina del corso;
- Il personale di supporto alla didattica fornisce supporto durante le esercitazioni e lo svolgimento degli esami;
- Un gruppo email servirà per le comunicazioni tra docente e studenti che avranno a disposizione un giorno settimanale per il ricevimento con il docente

Programma (contenuti dell'insegnamento)

- Introduzione al corso e modalità di esame. L'automazione. Sistemi di controllo. Sistemi dinamici tempo continuo. Esempi: open loop vs. closed loop.
- Equazioni differenziali ordinarie e l'operatore differenziale. Sistemi dinamici tempo discreto: definizione ed esempi. Sistemi dinamici tempo discreto per la simulazione numerica di sistemi dinamici tempo continuo. Il metodo delle differenze in avanti
- Definizioni: forma normale e forma di stato. Definizione di ingresso, stato e uscita.
- · Introduzione a Matlab ed esempi
- Proprietà dei sistemi dinamici: causalita', stazionarieta', linearita' e principio di sovrapposizione degli effetti. Cambiamento di coordinate ed equivalenza di sistemi dinamici. Il concetto di equilibrio; esempio di calcolo degli equilibri.
- Il tool Simulink. Esempi di simulazione
- Sistemi SISO, SIMO, MISO, MIMO: definizione e struttura delle equazioni differenziali. La linearizzazione di sistemi di equazioni differenziali non lineari. Esempi: linearizzazione in punto di equilibrio e attorno ad una traiettoria
- Forma di stato. Esempi. La forma canonica di controllo. Calcolo di una soluzione in forma chiusa per sistemi LTI tempo continui: l'equazione di Lagrange; integrale di convoluzione.
- Forma di Jordan e analisi modale.
- Stabilità: definizione e criteri
- Trasformata di Laplace e risposte forzate di sistemi LTI. Funzione di trasferimento.
- · Analisi in frequenza: diagrammi di Bode, Nyquist
- Effetti della retroazione e specifiche. Definizione matematica delle specifiche. Criterio di Nyquist.
- Progetto del controllore per sistema stabile.
- Progetto del controllore mediante luogo delle radici. La tecnica del doppio anello di controllo.
- · Progetto del controllore mediante il tool Sisotool.

Bibliografia e materiale didattico

- A. Bicchi. "Fondamenti di Automatica Parte I" (http://www.centropiaggio.unipi.it/sites/default/files/fda1-text.pdf)
- P. Bolzern, R. Scattolini, N. Schiavoni: "Fondamenti di Controlli Automatici", McGraw Hill
- · G. Marro: "Controlli Automatici", Zanichelli
- Danilo Caporale, Silvia Strada, "Automatica Raccolta di esercizi risolti, con appendice MATLAB", 2015, Pitagora, ISBN 88-371-1915-1

Indicazioni per non frequentanti

No

Modalità d'esame

La verifica delle conoscenze avverrà mediante una prova scritta e una orale. Nella prova scritta lo studente dovrà analizzare un sistema dinamico non lineare tempo-continuo, porlo in una opportuna descrizione matematica linearizzata, individuarne le caratteristiche funzionali, tradurre matematicamente le specifiche richieste per il suo funzionamento ideale e progettare un controllore per rispettare tali specifiche.

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Durante la prova lo studente avrà a disposizione un opportuno strumento di calcolo e l'uso del materiale del corso e di ogni altro materiale ritenuto utile. L'incapacità a tradurre le specifiche assegnate in vincoli sul diagramma di Bode o di determinare un controllore per il soddisfacimento di tali vincoli sono considerate lacune sufficienti a determinare il non superamento dell'esame. Per gli scritti sufficienti, il giudizio complessivo è il risultato della bontà della risposta ai vari punti proposti in termini di completezza e correttezza dei risultati, rigore dell'approccio e del linguaggio utilizzato, chiarezza di spiegazione dei vari passaggi. In caso di superamento della prova scritta (valutazione >=18/30), durante la prova orale, lo studente dovrà interagire con la commissione svolgendo uno o più esercizi sulle tematiche del corso e rispondendo a quesiti di carattere più strettamente teorico. Il voto complessivo sarà mediato sui risultati della prova scritta e orale.

Stage e tirocini

No

Pagina web del corso

http://www.centropiaggio.unipi.it/course/teoria-dei-sistemi.html-0

Note

L'orario di ricevimento è aggiornato dal docente sulla pagina del corso (si suggerisce di far presente, eventualmente anche con minimo anticipo, al docente l'intenzione di presentarsi). Il docente è sempre disponibile a concordare con lo studente, tramite email, ricevimento in orario diverso da quello canonico.

Ultimo aggiornamento 16/05/2017 14:50

3/3