

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

BIOCHIMICA E BIOLOGIA MOLECOLARE

ADRIANO PODESTA'

Academic year 2016/17

Course MEDICINA VETERINARIA

Code 057EE

Credits 12

Modules Area Type Hours Teacher(s)

BIOCHIMICA BIO/10 LEZIONI 112 ADRIANO PODESTA'

BIOLOGIA MOLECOLARE BIO/12 LEZIONI 40 ADRIANO PODESTA'

Obiettivi di apprendimento

Conoscenze

Il corso di biochimica e biologia molecolare si propone di permettere allo studente di: - acquisire le conoscenze relative alla struttura e alle trasformazioni dello stato vivente della materia nella prospettiva della loro applicazione medica e zootecnica.

- acquisire le conoscenze relative alla propagazione longitudinale e trasversale dell'informazione genetica, alla sua espressione ed evoluzione,

in relazione alle implicazioni biologiche, tassonomiche e mediche che da ciò conseguono.

Modalità di verifica delle conoscenze

Esame orale

Capacità

Lo studente acquisirà la capacità di descrivere in termini unitari i processi e le trasformazioni dello stato vivente, rimuovendo ogni pregiudizio di ordine finalistico e applicando esclusivamente le leggi fisiche, chimiche e la logica dei sistemi complessi.

Modalità di verifica delle capacità

Durante l'esame orale a partire da un argomento specifico lo studente sarà sollecitato dal docente a dimostrare come i vari processi metabolici e di espressione dell'informazione trattati nel corso siano tutti interconnessi tra di loro.

Comportamenti

Il corso si propone di generare nello studente senso critico, disponibilità al confronto e capacità di analisi, unitamente alla prospettiva teleonomica medica corretta.

Modalità di verifica dei comportamenti

Sia durante le lezioni frontali che in sede di esame finale la modalità di approccio critico all'intera disciplina sarà oggetto di stimolo e valutazione.

Prerequisiti (conoscenze iniziali)

Non necessari

Corequisiti

Capacità di lettura oggettiva del testo

Prerequisiti per studi successivi

Il corso di biochimica e biologia molecolare costituisce una base necessaria allo studente per poter comprendere i processi fisiopatologici di interesse medico-veterinario nonché il corretto approccio terapeutico alle patologie.

Indicazioni metodologiche

Lezioni frontali con ausilio di slides e video. Lezioni integrative di chimica generale e propedeutica biochimica. "Question times" interattivi in classe, a domanda aperta.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Programma (contenuti dell'insegnamento)

Nozioni propedeutiche: Richiami di termodinamica: sistemi, stati, funzioni di stato, grandezze estensive ed intensive. Energia, lavoro, calore, temperatura. 1a legge della termodinamica. Convenzione dei segni e grandezze differenziali. Lavoro P?V. Entalpia. Entropia. 2a legge della termodinamica. Energia libera di Gibbs. Equilibrio termodinamico. Spontaneità di reazione chimica. Fattore entalpico e fattore entropico nella spontaneità di reazione. Stati standard chimico e biochimico. Relazione fra ?G° e Ke. Reversibilità di reazione. Additività delle ?G in reazioni associate. Fattori responsabili della direzionalità di una via metabolica.

6 ore Struttura chimica dell'acqua. Dipoli permanenti. Dipoli indotti. Momento dipolare. Interazioni dipolari: legame a idrogeno e forze di Van der Waals. Idrofilia ed idrofobicità. Elettroliti forti e deboli. Dissociazione dell'acqua. pH. Sistemi acido-base coniugati. Dissociazione di acidi deboli in acqua. pKa e pKa'. Legge di Henderson-Hasselbalch.

2 ore Struttura e nomenclatura dei carboidrati. Monosaccaridi: stereoisomeria, diastereoisomeri, epimeri, strutture cicliche, carbonio anomerico, configurazioni ? e ?, mutarotazione. Derivati dei monosaccaridi : esteri fosforici, acidi e lattoni, alditoli, amminozuccheri, glicosidi. Oligosaccaridi. Polisaccaridi di riserva : amido e glicogeno. Polisaccaridi strutturali : cellulosa, emicellulose, glicosaminoglicani e polisaccaridi della parete batterica.

4 ore Struttura molecolare e principali attività biologiche dei lipidi. Acidi grassi. Triacilgliceroli o grassi. Cere. Glicerofosfolipidi, sfingolipidi e glicosfingolipidi. Colesterolo ed ormoni steroidi.

2 ore Struttura e proprietà di molecole e strutture sovramolecolari amfofile.

2 ore Definizione e struttura degli aminoacidi. Proprietà delle catene laterali degli ?-amminoacidi standard. Il legame peptidico. Sua planarità. Angoli ? e ? e loro significato nel determinismo della geometria di peptidi. Struttura della proteine : definizione di struttura primaria, secondaria, terziaria e quaternaria. ? -eliche, foglietti ? parallelo ed antiparallelo, avvolgimento casuale e ripiegamento ?. Coesistenza di più strutture secondarie in una proteina. Struttura quaternaria : proteine omo- ed etero-oligomeriche. Glicani legati in N ed in O.

4 ore ATP: struttura chimica e significato biologico. Idrolisi del legame fosfoanidridico dell'ATP e sua ?Go'. Concetto di legame ad elevato potenziale di trasferimento. ADP, AMP, P e PP. Carica energetica dell'adenilato. Turnover dei nucleotidi, degli acilfosfati, fosfati enolici, fosfoammidi e fosfato guanidinico.

2 ore Reazioni ox-red. Potenziale di ossidoriduzione. Equivalenti riducenti, NAD(P)+, NAD(P)H, FAD e FAD(H2): struttura e significato biologico. Aspetti meccanicistici delle funzioni nicotinica ed isoallossazinica. Paradigma delle reazioni NAD(P)+ e FAD-dipendenti.

1 ora Concetto di catalisi, Catalisi ed energia di attivazione. Gli enzimi. Definizione di apo- ed olo-enzima, cofattore, gruppo prostetico, sito di legame, sito attivo, sito allosterico. Velocità di reazione. Ordine di reazione. Reazioni di ordine 1 e 0. Curva di avanzamento. Velocità iniziale (v0). Legge di Michaelis-Menten. Significato di Km e Vmax. Numero di turnover. Unità enzimatica. Attività specifica. Curva dei doppi reciproci. Inibizione competitiva e non competitiva.

4 ore Gli enzimi come catalizzatori ad attività regolabile. Regolazione allosterica e covalente. Induzione e repressione enzimatica. Attivazione di enzimi per proteolisi di precursori.

2 ore Vitamine e loro derivati biologicamente attivi. Struttura ed attività biologica.

1 ora Glicolisi anaerobia. Localizzazione cellulare. Organi e tessuti con prevalenza del metabolismo glicolitico anaerobio in organismi aerobi. Stadi di imprinting, scissione aldolica, ossidazione del substrato e produzione di energia nella glicolisi anaerobia. Destini metabolici del piruvato. Metabolismo del lattato. Metabolismo dei monosaccaridi, dei disaccaridi e del glicerolo nella via glicolitica. Navetta dell'aspartato e del glicerolo-3-fosfato nel trasporto intramitocondriale di equivalenti riducenti. Regolazione della glicolisi. Glucochinasi: Km, inibizione da prodotto e ciclo futile del glucosio-6-fosfato. La proteina inibente la glucochinasi: effetti allosterici del fruttosio-1- fosfato e del fruttosio-6-fosfato. Fosfofruttochinasi-1: inibizione ed attivazione allosterica. Fosfofruttochinasi-2, proteinchinasi-cAMP dipendente e fosfoproteinfosfatasi. 6 ore Ciclo degli acidi tricarbossilici: significato biologico, localizzazione cellulare e disegno generale. Le reazioni chimiche del ciclo. Rendimento energetico del ciclo. Il complesso della piruvatodeidrogenasi: meccanismo di catalisi e regolazione, piruvatodeidrogenasi chinasi. Regolazione del ciclo degli acidi tricarbossilici. Gli intermedi del ciclo precursori di vie biosintetiche. I sistemi di trasporto della membrana mitocondriale interna coinvolti nel ciclo di Krebs. Il sistema navetta dell'acetil-CoA mitocondriale.

3 ore Gluconeogenesi. Reazioni caratteristiche della via gluconeogenetica. Struttura e meccanismo di azione della piruvato carbossilasi. Biotina e bioctina. Fosfoenolpiruvatocarbossichinasi. Fruttosio-1,6- fosfatasi e glucosio-6-fosfatasi. La reversibilità delle reazioni quasi all'equilibrio della glicolisi anaerobia nella gluconeogenesi. La regolazione della gluconeogenesi. Flusso alla membrana mitocondriale interna dei metaboliti della gluconeogenesi. I cicli futili nel sistema glicolisigluconeogenesi :loro significato biologico. Il ciclo di Cori ed il ciclo dell'alanina. Utilizzazione del propionato negli organismi aerobi superiori.

3 ore Significato biologico e localizzazione cellulare e tissutale della via dei pentosi fosfati. La fase ossidativa della via e la produzione di NADPH. Struttura e funzione biologica di tale coenzima. La fase non ossidativa della via. Regolazione della via e suoi diversi possibili stati funzionali. Lo stato funzionale della via nella mammella in asciutta ed in lattazione.

2 ore Metabolismo del glicogeno: localizzazione cellulare, tissutale e significato biologico. Glicogenolisi. Fosforilasi, enzima deramificante e ?-1,6-glicosidasi. Fosfoglucomutasi. Sintesi del glicogeno. UDPglucoso-fosforilasi, glicogenosintetasi ed enzima ramificante. Effettori allosterici e modifica covalente della fosforilasi. Il meccanismo a cascata per l'attivazione della fosforilasi. ProteinchinasicAMP-dipendente, fosforilasi chinasi, fosfoproteinfosfatasi ed inibitore-1. Regolazione allosterica e modifiche covalenti della glicogenosintasi. Effettori a cascata dell'inibizione della glicogenosintasi: proteinchinasi-cAMP-dipendente, proteinchinasi calmodulina-dipendente e proteinchinasi C. 3 ore Metabolismo degli acidi grassi. Assorbimento intestinale e trasporto ematico di acidi grassi, trigliceridi e colesterolo. Le lipasi cAMP-dipendenti. Il sistema di trasporto della carnitina. Localizzazione, significato biologico e reazioni della ?-ossidazione. Ossidazione degli acidi grassi a numero dispari di atomi di carbonio. Destino biologico dell'acetil-CoA e rendimento energetico della ?-ossidazione. Sintesi degli acidi grassi. Acidi grassi insaturi essenziali. Sintesi e utilizzo dei corpi chetonici. Meccanismi patogenetici molecolari della acidosi chetosica.

6 ore Ciclo dell'azoto. Reazioni di transaminazione e deaminazione ossidativa del glutammato. Ruolo della glutammina nell'assorbimento, nel trasporto e nella utilizzazione dell'azoto organico. Organismi ammoniotelici, uricotelici e ureotelici. Reazioni del ciclo dell'urea e sue relazioni con il ciclo di Krebs. Degradazione delle purine ad acido urico. Cenni sul destino dello scheletro carbonioso degli ?-amminoacidi. 3 ore Catena respiratoria mitocondriale e fosforilazione ossidativa. Potenziale elettrochimico standard. Relazione fra ?Eo' e ?Go'. I cofattori della catena respiratoria. NADH-ubichinolo-reduttasi. NADH-succinico-reduttasi. Citocromo c reduttasi. Citocromo c ossidasi. Il gradiente elettrochimico di H+ alla membrana mitocondriale interna. Struttura e funzione della ATPasi mitocondriale. I sistemi respiratori e non respiratori ferrodossina-dipendenti. Significato delle fermentazioni anaerobie nella riossidazione dei trasportatori di equivalenti riducenti.

A DICAL SALIS

Sistema centralizzato di iscrizione agli esami Syllabus

1343

Università di Pisa

6 ore I meccanismi molecolari dell'azione ormonale. I sistemi dell'AMP-ciclico, del fosfatidilinositolo e della calmodulina. Meccanismo d'azione degli ormoni steroidi, tiroidei e delle vitamine D.

3 ore Struttura e proprietà delle membrane biologiche. Fluidità delle membrane e loro asimmetria. Le proteine di membrana: modello a mosaico fluido. Significato biologico della compartimentalizzazione cellulare negli eucarioti. I meccanismi di trasporto transmembrana. Turnover delle membrane biologiche. Endocitosi e internalizzazione mediata da recettore.

3 ore La struttura primaria del DNA. Legame fosforibosilico e asimmetria della catena a singolo filamento del DNA. Complementarietà e antiparallelismo delle catene fosforibosiliche nel DNA a doppia catena. Ruolo dei legami a idrogeno fra le basi complementari dei filamenti antiparallelismo nella stabilizzazione della struttura primaria del DNA a doppio filamento. Struttura primaria delle diverse specie di RNA. Struttura dell'RNA ribosomale, di trasporto e messaggero. Ruolo delle sequenze palindrome nella formazione di ripiegamenti ad ansa o forcina nell'RNA. Il ruolo dei ripiegamenti dell'RNA nello spazio per l'espressione dell'attività catalitica o di riconoscimento dell'RNA. 6 ore Il modello del DNA a doppia elica secondo Watson e Crick. Proprietà strutturali del DNA-B. Fenomeni topologici del DNA a doppia elica: lo

stato di superavvolgimento negativo del DNA in vivo. Ruolo delle forze deboli nella stabilizzazione della struttura secondaria degli acidi nucleici. Influenza delle alterazioni topologiche del DNA nel suo impaccamento nucleare e nella destabilizzazione transitoria del struttura a doppia catena. Il DNA non codificante negli eucarioti: DNA satellite, sequenze ripetute, sequenze Alu e sequenze interposte (introni). Loro potenziale significato biologico, anche in riferimento all'identificazione della parentalità e dell'attribuzione a razze. Struttura dei cromosomi.

6 ore Significato della replicazione del DNA La replicazione semiconservativa del DNA negli organismi procarioti ed eucarioti. Siti di origine della replicazione nel cromosoma circolare batterico e nei cromosomi lineari eucarioti. Fattori responsabili della formazione della bolla di replicazione del DNA. Le forcelle di replicazione. Ruolo biologico della proteina legante il singolo filamento, delle topoisomerasi e delle girasi nella formazione e propagazione della bolla di replicazione. Attività biologiche della DNA polimerasi III e della DNA polimerasi I nelle cellule procariote. Catena guida e catena ritardata, frammenti di Okazaki, primasi e completamento della catena ritardata. I loro equivalenti nelle cellule eucariote.

4 ore Meccanismi responsabili dell'accuratezza e variabilità della replicazione del DNA.

2 ore La trascrizione dell'informazione genetica: concetto di gene molecolare, sequenza consenso e promotori della trascrizione, RNA polimerasi, riconoscimento del promoter, sintesi dell'mRNA e sua terminazione nei procarioti e negli eucarioti, significato delle regioni enhancer. L'operone lac di E. coli. L'operone trp.

4 ore I processi di maturazione e modificazione post-trascrizionale dell'mRNA eucariote.

3 ore Esempi notevoli di variabilità biologica indotta da modifica post-trascrizionale: immunoglobuline, proopiomelanocortina, apolipoproteine, proteine contrattili e collagene 4 ore Dal gene alla proteina: il codice genetico, significato biologico del "dondolamento " della terza base del codone, le aminoacil-tRNA sintetasi, traduzione dell'informazione genica.

2 ore Traduzione nei procarioti : ruolo di mRNA, tRNA, ribosomi; fasi di inizio, allungamento e terminazione della sintesi proteica nei procarioti . Traduzione negli eucarioti : confronto con i procarioti, inibitori e controllo della traduzione. 6 ore Ripiegamento della proteina nascente e sue modificazioni covalenti post-traduzionali, catalisi conformazionale, prioni, indirizzamento delle proteine e loro distruzione programmata.

3 ore

Bibliografia e materiale didattico

- "I Principi di Biochimica di Lehninger", David L. Nelson, Michael M. Cox. Sesta edizione. Ed. Zanichelli.
- "Biochimica", Jeremy Berg, John L.Timoczcko, Lubert Stryer. Settima edizione. Ed. Zanichelli
- "Biochimica", C. K. Mathews, K. E. Van Holde, K. G. Ahern, Casa Editrice Ambrosiana, Isbn 88- 408-1287-3 Letture consigliate:
- "Chimica organica", T W Graham Solomons, Craig B Fryhle. Terza edizione italiana. Ed. Zanichelli
- "Biologia. Biologia degli Animali", D. Sadava, H.C. Helle e Altri, Vol. 5 Terza Edizione. Ed. Zanichelli.
- "Biologia. L'evoluzione la biodiversità", D. Sadava, H.C. Helle e Altri, Vol. 3 Terza Edizione. Ed. Zanichelli.

"Biologia. L'ereditarietà e il genoma", D. Sadava, H.C. Helle e Altri, Vol. 2 Terza Edizione. Ed. Zanichelli

Indicazioni per non frequentanti

Nessuna

Modalità d'esame

Esame orale

Stage e tirocini

Non previsti

Pagina web del corso https://elearning.vet.unipi.it/

Altri riferimenti web

https://www.ncbi.nlm.nih.gov/gquery/ http://www.expasy.org/tools/ https://iupac.org/what-we-do/nomenclature/ http://goldbook.iupac.org/

Note

Nessuna

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA Ultimo aggiornamento 24/04/2017 12:28