

Sistema centralizzato di iscrizione agli esami Syllabus

<u>Università di Pisa</u>

CHIMICA ORGANICA II E LABORATORIO

LORENZO DI BARI

Academic year 2016/17

Course CHIMICA PER L'INDUSTRIA E

L'AMBIENTE

Code 126CC

Credits 9

Modules Area Type Hours Teacher(s)

CHIMICA ORGANICA II CHIM/06 LEZIONI 93 LORENZO DI BARI GENNARO PESCITELLI

Obiettivi di apprendimento

Conoscenze

Il Corso di Chimica Organica II e laboratorio completerà la formazione di base degli studenti sulla teoria e la pratica della Chimica Organica. Lo studente avrà acquisito conoscenze

- del fenomeno dell'aromaticità e delle proprietà e della reattività fondamentali dei composti aromatici semplici e condensati, compresi i sistemi eteroaromatici;
- delle interazioni tra gruppi funzionali e in particolare di come la coniugazione tra gruppi diversi modifichi le reattività dei composti;
- di quali sono alcuni dei principali metodi per il controllo delle reazioni di condensazione tra composti carbonilici e loro analoghi e derivati:
- · dei fondamenti della struttura e della reattività degli eterocicli saturi e in particolare dei monosaccaridi;
- degli elementi base delle spettroscopie UV-vis, 1H-NMR e IR per l'identificazione, il riconoscimento e la quantificazione dei composti organici;
- di alcune tecniche di laboratorio per la realizzazione di reazioni organiche, incluse semplici manipolazioni in atmosfera inerte (tecniche Schlenck).

Modalità di verifica delle conoscenze

- Gli studenti verranno continuamente stimolati all'intervento critico durante le lezioni frontali, per verificare la comprensione degli
 argomenti trattati in tempo reale.
- Verranno svolte esercitazioni in aula con la partecipazione diretta degli studenti alla lavagna.
- Verranno proposti esercizi da svolgere autonomamente.
- Il laboratorio porrà gli studenti di fronte alla verifica pratica dell'acquisizione delle conoscenze.
- Gli studenti dovranno tenere un quaderno di laboratorio, che verrà visionato in tempo reale.

Capacità

Al termine del corso lo studente sarà in grado:

- di interpretare un notevole numero di schemi di reazione comunemente presenti in letteratura e di proporre plausibili meccanismi di reazione;
- di proporre procedure per semplici trasformazioni di prodotti chimici;
- di condurre sintesi organiche semplici su piccola scala, isolando e purificando i prodotti di reazione;
- di riconoscere prodotti organici attraverso l'analisi dei dati spettroscopici.

Modalità di verifica delle capacità

Al termine del corso lo studente sarà in grado:

- di interpretare un notevole numero di schemi di reazione comunemente presenti in letteratura e di proporre plausibili meccanismi di reazione:
- di proporre procedure per semplici trasformazioni di prodotti chimici;
- di condurre sintesi organiche semplici su piccola scala, isolando e purificando i prodotti di reazione;
- di riconoscere prodotti organici attraverso l'analisi dei dati spettroscopici.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Comportamenti

Lo studente acquisirà un atteggiamento critico e consapevole nei confronti della letteratura organica. Inoltre acquisirà una condotta responsabile nel laboratorio di sintesi organica, incluse le pratiche riguardanti l'utilizzo dei dispostivi di protezione individuali (DPI), di assemblaggio e pulizia della vetreria, della manipolazione di prodotti chimici e del loro corretto smaltimento.

Modalità di verifica dei comportamenti

Durante le esercitazioni in aula e i ricevimenti si potrà valutare la maturazione degli strumenti critici.

Durante il laboratorio sperimentale si verificherà la condotta, nonché l'accuratezza e la cura nelle attività e il corretto uso dei DPI, della corretta manipolazione e smaltimento dei prodotti chimici

Prerequisiti (conoscenze iniziali)

Conoscenza di: struttura e della reattività organica di base; stereochimica; principali gruppi funzionali; delocalizzazione elettronica; reattivi elettrofili e nucleofili; basicità e acidità e concetto di pKa; semplici meccanismi di reazione; comportamento di base nel laboratorio chimico; norme di sicurezza; uso di dispositivi di protezione individuale; uso corretto della vetreria di base; semplici operazioni di laboratorio (es. pesata, filtrazione, raccolta dei prodotti, smistamento di liquidi non miscibili, essiccamento di soluzioni, separazione tramite TLC); trattamento dei dati di reazione (calcolo della resa, stima della purezza dei prodotti)

Prerequisiti per studi successivi

Tutti i corsi di chimica organica superiore

Indicazioni metodologiche

Il corso consiste in lezioni frontali alla lavagna, possibilmente con l'uso di videoproiettore. Le esercitazioni in aula si svolgono alla lavagna. Le esercitazioni pratiche sono obbligatorie e si svolgono in laboratorio in giorni prestabiliti e non modificabili. Tutte le esperienze di laboratorio vengono descritte preventivamente durante le lezioni frontali. Si forniscono inoltre dispense dettagliate per ciascuna esperienza, contenenti le seguenti informazioni: introduzione e cenni teorici; reagenti e solventi da utilizzare; apparecchiatura da assemblare; precauzioni di sicurezza; procedura dettagliata; caratterizzazione dei prodotti; smaltimento dei rifiuti.

Gli studenti hanno a disposizione numerosi esercizi attraverso la piattaforma di e-learning e i docenti ricevono gli studenti con cadenza almeno settimanale. Possono inoltre essere raggiunti per posta elettronica.

Programma (contenuti dell'insegnamento)

Delocalizzazione elettronica in anione e catione allici, dieni e polieni coniugati (spettroscopia UV-vis). Conseguenze della delocalizzazione elettronica e delle cariche su acidità e basicità. Aromaticità sulla base degli Orbitali Molecolari: benzene, composti eteroaromatici, sistemi aromatici condensati. Cenni sui fondamenti dell'NMR ed effetti induttivi, di risonanza e di anisotropia magnetica (corrente d'anello) sugli spostamenti chimici.

La reazione di sostituzione elettrofila aromatica (SEAr) sul benzene. Effetti di attivazione/disattivazione dei sostituenti: reazioni che danno polisostituzione o meno. Effetti di orientazione (regio selettività). La SEAr sul naftalene e sui composti eteroaromatici. Reazioni di Gattermann e di Reimer-Tiemann.

Formazione e uso di composti organometallici in sintesi: Li, Mg, Cu, Zn.

La sostituzione nucleofila aromatica: via benzino (eliminazione-addizione); via addizione-eliminazione; via SN1 con sali di diazonio (preparazione e reattività anche con sali di Cu(I)). Poprietà e reazioni dei composti eteroaromatici.

Formazione e reazioni di enoli ed enolati e di loro equivalenti. Reazioni in alfa a gruppi carbonilici (o equivalenti). Alfa-alogenazione. Condensazioni aldoliche incrociate. Enolati preformati e loro equivalenti stabili. Enoleteri. Equivalenti degli enoli specifici per aldeid, chetoni, acidi carbossilici. Reazioni aldoliche intramolecolari e ciclizzazioni. La reazione di Mannich.

Alchilazione di enolati. Alchilazione di composti beta-dicarbonilici. Sintesi malonica e acetacetica.

Addizioni coniugate. Nitroalcani e reazione di Henry.

Cenni sui composti aliciclici contenenti azoto, zolfo e ossigeno. (Emi)acetali ciclici ed effetti stereo elettronici. Effetto anomerico. Elementi di stereochimica degli zuccheri semplici.

Principi di spettroscopia UV-vis, IR e NMR. Correlazioni tra struttura e spettri e metodi per la previsione e l'interpretazione spettrale. Utilizzo di dati UV-vis, IR e 1H-NMR per la caratterizzazione e l'identificazione di semplici composti organici. Preparazione del campione per le spettroscopie UV-vis, IR e NMR.

Norme di comportamento nel laboratorio chimico. Frasi di rischio e sicurezza, simboli di rischio, schede di sicurezza dei composti chimici. Tecnica di laboratorio per reazioni in atmosfera inerte.

Bibliografia e materiale didattico

Jonathan Clayden, Nick Greeves, Stuart Warren Organic Chemistry ISBN: 978-0199270293

Oxford University Press

Dispense di Laboratorio distribuite tramite la piattaforma di e-learning

Esempi di esercizi di assegnazione strutturale e compiti svolti degli anni precedenti, distribuiti tramite la piattaforma di e-learning

Indicazioni per non frequentanti

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

La frequenza del laboratorio è in ogni caso obbligatoria, così come la corretta redazione del quaderno di laboratorio.

Modalità d'esame

L'esame consiste in un compito scritto della durata di 4 ore, che tipicamente contiene 7 esercizi e una prova orale. Un esercizio è maggiormente legato al laboratorio e in genere richiede il riconoscimento di una o più sostanze organiche a partire da dati spettroscopici e/o nell'assegnazione delle transizioni visibili negli spettri a gruppi funzionali e altre strutture organiche. Gli altri 6 esercizi richiedono la proposta o di strategie di sintesi di composti organici o di plausibili meccanismi per spiegare trasformazioni date. Gli esercizi hanno uguale peso e la risoluzione corretta di 3 esercizi è ritenuta sufficiente, a condizione che la prova di laboratorio non sia nulla. All'orale partecipano i docenti del corso, possibilmente coadiuvati da colleghi e cultori della materia. Per il voto finale vengono altresì valutati il comportamento dello studente durante le esperienze di laboratorio e la compilazione del relativo quaderno.

Pagina web del corso https://polo3.elearning.unipi.it/course/view.php?id=2768

Ultimo aggiornamento 23/05/2017 12:07

3/3