

# Sistema centralizzato di iscrizione agli esami Syllabus

# Università di Pisa

# FISICA 3

## **GIOVANNI BATIGNANI**

Academic year 2017/18
Course FISICA
Code 248BB
Credits 9

ModulesAreaTypeHoursTeacher(s)FISICA 3FIS/04LEZIONI48GIOVANNI BATIGNANI

#### Obiettivi di apprendimento

#### Conoscenze

- 1. Interazione fra particelle cariche o fotoni con la materia stabile.
- 2. Utilizzo di particelle cariche o fotoni per l'indagine di sistemi di dimensioni sub-atomiche (nuclei, nucleoni, particelle elementari).
- Indagine di sistemi di dimensioni sub-atomiche tramite i loro decadimenti spontanei.
- => Per raggiungere questi obiettivi e' necessario:
  - · completare lo studio dell'elettromagnetismo in forma relativisticamente covariante;
  - · sviluppare la teoria dell'irraggiamento;
  - sviluppare il formalismo delle sezioni d'urto (modello puntiforme e modello ondulatorio), dei fattori forma, dello spazio delle fasi;
  - introdurre un modello semplificato dei nuclei (modello a goccia).

## Modalità di verifica delle conoscenze

- Enunciare e spiegare gli argomenti trattati nelle lezioni ed esercitazioni
- Saper rispondere alle domande contenute nella "checklist" reperibile nella pagina web del corso
- · Risolvere in modo autonomo problemi basati sulle conoscenze introdotte nel corso

## Capacità

- Capacita' di risolvere problemi impostando analisi sia qualitative che quantitative
- Capacita' di spiegare gli argomenti oggetto del corso, illustrandoli con esempi ed applicazioni.

## Modalità di verifica delle capacità

Nello svolgimento del corso le capacità sono verificate dal docente tramite domande, discussioni e verifica delle risoluzioni degli esercizi svolti nelle esercitazioni: tali verifiche non sono oggetto di valutazione del singolo studente e non hanno impatto sul voto finale, assegnato solo in base alle prove finali.

In sede di esame finale (solo prova orale ) si potra' chiedere di:

- rispondere a domande contenute nella "checkilist" reperibile nella pagina web del corso;
- enunciare e spiegare argomenti trattati nelle lezioni ed esercitazioni;
- · risolvere problemi basati sugli argomenti oggetto del corso

# Comportamenti

E' richiesta (ma non indispensabile) una partecipazione il più possibile attiva degli studenti durante le lezioni ed in particolare di:

- ripassare i prerequisiti del corso prima di partecipare alle lezioni o esercitazioni
- effettuare durante le esercitazioni in forma scritta una serie di esercizi i cui passi sono indicati dal docente in modo dettagliato



# Sistema centralizzato di iscrizione agli esami Syllabus

# Università di Pisa

# Modalità di verifica dei comportamenti

Interazione del docente con la classe, tramite domande, discussioni e verifica delle risoluzioni degli esercizi svolti durante le esercitazioni. Tali verifiche non sono oggetto di valutazione e non hanno impatto sul giudizio finale del singolo studente.

#### Prerequisiti (conoscenze iniziali)

Conversione delle formule e dei valori numerici delle grandezze fisiche da unità di misura MKSA a CGS e "naturali".

Elementi di relativita' ristretta (dal corso di "Meccanica classica"), fra cui: 4-vettori covarianti e controvarianti, trasformazioni di Lorentz, modulo e prodotto scalare, invarianti di Lorentz, posizione di un punto, tempo proprio, derivate in 4 dimensioni, 4-velocità, 4-impulso, 4-accelerazione, 4-forza, moto di una carica in campi magnetici ed elettrici, tensore g??. Elettromagnetismo classico (dal corso di "Fisica Generale II"), fra cui: equazioni di Maxwell, onde elettromagnetiche, potenziali ritardati e potenziali di Lienard-Wiechert.

#### Programma (contenuti dell'insegnamento)

#### Parte propedeutica (alcuni argomenti in forte connessione con "Fisica Classica" e "Fisica Generale II")

Formulazione covariante dell'elettromagnetismo. Tensore energia-impulso del campo elettromagnetico e tensore degli sforzi.

Campo elettromagnetico generato da una carica in moto vario. Potenza emessa da una carica accelerata, distribuzione angolare relativistica e non. Irraggiamento di dipolo elettrico, quadrupolo elettrico, dipolo magnetico. Cenni agli acceleratori di particelle: elettrostatici, il betatrone, il ciclotrone ed il sincrociclotrone. Radiazione in acceleratori circolari e lineari, radiazione di sincrotrone.

#### Indagine di sistemi di dimensioni sub-atomiche

Sezione d'urto per fenomeni corpuscolari e ondulatori: sezione d'urto totale, differenziale, inclusiva, esclusiva.

Esempio: sezioni d'urto di onde elettromagnetiche su antenne e su cariche.

Reazione di radiazione. Larghezza di riga, diffusione risonante.

Esempio: scattering Rutherford e la deduzione di una nuova forza "forte".

Complemento: il modello a goccia dei nuclei.

Esempi di reazioni elastiche ed anelastiche di particelle.

Energia di soglia di una reazione, funzioni di distribuzione nello stato finale di una reazione e loro trasformazioni relativistiche.

Decadimenti spontanei: vita media e larghezza di decadimento.

Esempi: decadimenti alfa, beta, gamma dei nuclei: generalita', cinematica; il neutrino e l'antineutrino.

Esempi: decadimenti del pione neutro e carico.

Esempi: decadimenti a tre corpi ed il Dalitz plot.

Metodi della massa invariante e della massa mancante per la identificazione di particelle.

# Interazione fra particelle cariche o fotoni con la materia stabile

Interazione dei fotoni con la materia: scattering Thomson e Rayleigh, effetti fotoelettrico e Compton, produzione di coppie elettrone-positrone.

Fattori di forma. Esempi: la diffrazione ed il fattore di forma elettromagnetico dei nuclei.

Scattering multiplo coulombiano.

Perdita di energia per collisioni, formula di Bethe-Bloch.

Effetto Cerenkov: generalita' e spettro in frequenza dei fotoni emessi.

Radiazione di frenamento, perdita di energia per irraggiamento e lunghezza di radiazione.

Applicazioni : particelle cariche di alta energia che attraversano materiali di tipo diverso.

Esempi: la scoperta del positrone, la scoperta dell'antiprotone.

# Indicazioni per non frequentanti

Si consiglia di :

• rispondere alle domande contenute nella "checkilist" reperibile nella pagina web del corso.

#### Modalità d'esame

- Solo prova orale sugli argomenti svolti a lezione e eventuale discussione di problemi ad essi riconducibili.
- Gli studenti che intendono sostenere l'esame devono iscriversi via web nel sito https://esami.unipi.it/esami/.
- Dal 1/1/2017 sono previsti 6 appelli (2 invernali, 2 estivi, 1 settembre, 1 ~ottobre/novembre).
- Attenzione non solo alla precedenza sostanziale ed anche formale di FISICA II, ma anche alla sostanziale propedeuticita' di 'Meccanica Classica'.



# **Sistema centralizzato di iscrizione agli esami** Syllabus

# Università di Pisa

Ultimo aggiornamento 15/09/2017 08:47

3/3