

Università di Pisa

ANALISI E SVILUPPO DEI PROGETTI

LEONARDO TOGNOTTI

Anno accademico

CdS INGEGNERIA CHIMICA
Codice 200II

CFU

Moduli Settore/i Tipo Ore Docente/i

ANALISI E SVILUPPO DEI ING-IND/25 LEZIONI 60 LEONARDO TOGNOTTI

6

2018/19

PROGETTI

Obiettivi di apprendimento

Conoscenze

Acquisizione di conoscenze e metodologie per progettazione di sistema - *Impianto chimico e dell'industria di processo*- con particolare riferimento alle fasi di sviluppo del progetto, con lo scopo di definire le specifiche di processo (flow sheet), di impianto (P&I) e delle principali apparecchiature ed ausiliari.

Modalità di verifica delle conoscenze

Lo studente sarà valutato sulla sua capacità di discutere i contenuti del corso utilizzando la terminologia appropriata. - Durante la prova orale lo studente deve essere in grado di dimostrare la sua conoscenza del materiale del corso ed essere in grado di discutere il lavoro del progetto eseguito alla fine del corso

Capacità

Capacità di effettuare valutazioni tecnico-economiche e di elaborare un progetto finale su una unità produttiva assegnata dal docente ad un gruppo di lavoro

Modalità di verifica delle capacità

Sviluppo di un progetto con discussione dell'elaborato progettuale nell'esame orale

Comportamenti

Durante il lavoro di gruppo gli studenti potranno maturare la sensibilità alla integrazione delle competenze caratterizzanti l'ingegneria chimica e di processo

Modalità di verifica dei comportamenti

Durante il lavoro di gruppo saranno verificate le modalità di analisi e integrazione dei dati e delle nozioni

Prerequisiti (conoscenze iniziali)

Operazioni Unitarie, Progettazione di apparecchiature chimiche, Ingegneria delle reazioni chimiche, Affidabilità e sicurezza nell'industria di processo

Indicazioni metodologiche

Il corso si svolge in modo frontale tradizionale, talvolta con l'ausilio di slide/filmati/connessioni web. Possono essere inseriti seminari tenuti da esperti. Il materiale didattico a supporto del corso è postato sul portale e-learnng. Quando possibile vengono organizzate visite presso stabilimenti industriali. L'interazione con lo studente avviene anche al di fuori della lezione mediante ricevimenti settimanali e posta elettronica. Il ricevimento settimanale del docente è concordato all'inizio del corso in base all'orario delle lezioni.

Sviluppo di un progetto con discussione dell'elaborato progettuale all'esame orale

Frequenza: consigliata

Attività didattiche:

- frequentando le lezioni
- preparazione della relazione orale / scritta
- lavoro di gruppo
- Ricerca bibliografica

1/2

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Utilizzo di applicativi/ fogli di calcolo

Programma (contenuti dell'insegnamento)

INTRODUZIONE ALLA PROGETTAZIONE DI UN IMPIANTO DELL'INDUSTRIA DI PROCESSO Generalità sulla progettazione di un impianto chimico e dell'industria di processo. Modalità di svolgimento della progettazione. Specifica di progettazione. Piano generale di progettazione e documentazione di progetto. Verifiche e controllo della progettazione, sistemi qualità. Programmazione secondo Gantt e PERT delle fasi realizzative di un progetto a partire dall'ingegneria sino al "commissioning" ed agli start-up. Gestione dei fornitori di impianti e servizi. SVILUPPO DI UN PROGETTO: VINCOLI NORMATIVI La struttura della normativa cogente: Direttive, Regolamenti, Leggi nazionali e locali. Esempi di normativa di interesse per l'industria di processo (legislazione con regime autorizzatorio) Norme volontarie e di settore: il sistema ISO, normative e standard di settore. Cenni sugli appalti privati e commesse pubbliche. ISO 14001 e BS OHSAS 18000. La gestione integrata HSE nell'industria chimica. I Sistemi di gestione ambientale: ISO 14000, EMAS. Esempio di applicazione ad una industria di processo. L'integrazione qualita'-sicurezza-ambiente. La prevenzione ed il controllo integrato dell'inquinamento (IPPC)

SVILUPPO DI UN PROGETTO: VINCOLI ECONOMICI Metodi di valutazione dei costi di investimento e di esercizio. Valutazione dei ricavi. Introduzione alla contabilità industriale e strumenti di bilancio: conto profitti e perdite, balance sheet, flusso di cassa; interpretazione del bilancio. Analisi degli investimenti; ammortamento, metodi di attualizzazione dei costi, ritorno di un investimento. Cenni sul Project Financing. e sugli strumenti di decision making Esempi di valutazione dei costi di produzione nell'industria di processo

STOCCAGGIO DI FLUIDI: Serbatoi di processo e serbatoi di stoccaggio (tipologie ed accessori). Materiali e sicurezza degli stoccaggi. IMPIANTISTICA DEI MATERIALI SOLIDI: Trasporto, macinazione, vagliatura, classificazione, flottazione. Stoccaggio. Dosaggio. SEPARAZIONE GAS/ SOLIDO: principi, apparecchiature

AUSILIARI E SERVIZI DI IMPIANTO Le acque di stabilimento; Tipologia di approvvigionamento, criteri di riciclo, riutilizzo, riuso. Trattamenti delle acque . Fluidi ausiliari: aria compressa, gas tecnici, vettori energetici (vapore, olio diatermico, refrigeranti). Organizzazione dei servizi di stabilimento

ESEMPI DI PROGETTAZIONE: Esempi di applicazione, su impianti in continuo ed in discontinuo: bilanci materiali ed energetici, dimensionamento delle apparecchiature, scelta dei materiali, stesura del P&ID, del flow-sheet, dei fogli di specifica. Esempi trattati:- impianto di separazione e compressione idrocarburi (Oil&Gas), impianto batch con reattori multipurpose (industria farmaceutica); impianto con reattore e separazioni in continuo (gassificazione, distillazione di solventi organici, etc.)

Bibliografia e materiale didattico

Materiale didattico (Schemi, slides, Norme, etc.) su piattaforma **e-learning moodle** Riferimenti:

- GAVIN TOWLER, RAY SINNOTT: CHEMICAL ENGINEERING DESIGN: Principles, Practice and Economics of Plant and Process Design, 213, Elsevier Inc
- · Perry's "Chemical Engineers Handbook", McGraw-Hill
- PLANT DESIGN AND ECONOMICS FOR CHEMICAL ENGINEERS, Max S. Peters Klaus D. Timmerhaus, McGraw Hills

Excel sheets, AutoCAD or similar, Flow sheeting tools (UniSim),

Indicazioni per non frequentanti

Non susssistono variazioni per i non frequentanti

Modalità d'esame

L'esame consiste in una prova orale tra il candidato e il docente della durata media di 45 minuti.

La prova orale non è superata se il candidato mostra di non essere in grado di descrivere e giusticficare le scelte progettuali e le metodologie utilizzate per la redazione del progetto finale, esprimendosi in modo chiaro e di usando la terminologia corretta

Ultimo aggiornamento 06/10/2018 13:05