

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

STRUMENTI MATEMATICI PER L'ECONOMIA E PER L'AZIENDA

LAURA CAROSI

Anno accademico CdS Codice

ECONOMIA E COMMERCIO 079PP 6

Moduli Settore/i STRUMENTI MATEMATICI SECS-S/06 PER L'ECONOMIA E PER L'AZIENDA Tipo Ore LEZIONI 42

2018/19

Docente/i LAURA CAROSI

Obiettivi di apprendimento

Conoscenze

CFU

Il corso riguarda lo studio di problemi di ottimizzazione lineare e non lineare allo scopo di fornire un bagaglio di conoscenze e di strumenti di carattere quantitativo utili nell'ambito dei processi aziendali di decisione. La parte finale del corso è dedicata alla Data Envelopment Analysis affrontata sia con riferimento agli aspetti di carattere sia matematico che economico.

Modalità di verifica delle conoscenze

Le conoscenze dello studente saranno verificate mediante lo svolgimento di una prova scritta che verrà effettuata in aula informatica.

Capacità

Alla fine del corso lo studente dovrà acquisire le competenze per risolvere, attraverso strumenti matematici, problemi di carattere economico-aziendale. Più specificatamente dovrà essere capace di:

- tradurre classi problemi di carattere economico-aziendale in problemi di ottimo vincolato
- enunciare i teoremi di base della programmazione lineare
- risolvere un problema di programmazione lineare con l'algoritmo del simplesso
- usare software (matlab/excel) per risolvere semplici problemi di ottimizzazione
- studiare la relazione tra teoria ed esercizi
- dare un'interpretazione di carattere economico ai risultati ottenuti
- effettuare valutazione di efficienza non parametrica attraverso la Data Envelopment Analysis

Modalità di verifica delle capacità

Durante l'esame scritto, lo studente dovrà formulare e risolvere alcuni tipici problemi di carattere economico-aziendale.

Comportamenti

Alla fine del corso, lo studente vedrà potenziate le sue abilità nel comprendere, formalizzare e risolvere un problema secondo il linguaggio ed il rigore propri della matematica.

Lo studente sarà in grado di usare matlab ed excel per effettuare operazioni di calcolo matricale e per risolvere problemi di programmazione lineare

Modalità di verifica dei comportamenti

Durante l'esame, lo studente dovrà dimostrare la sua capacità di applicare i concetti matematici presentati nel corso per risolvere semplici problemi concreti.

Prerequisiti (conoscenze iniziali)

Gli argomenti insegnati nel corso di primo anno "Matematica generale", con particolare riferimento alle matrici, ai sistemi lineari ed alle funzioni di più variabili.

Indicazioni metodologiche

Metodollogia di insegnamento

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- lezioni frontali
- · attività di labroatorio

Metodologia di apprendimento

- · frequenza alle lezioni
- frequenza alle attività di laboratorio
- · studio individuale
- partecipazione alle attività di ricevimento del docente

Frequenza: fortemente consigliata

Programma (contenuti dell'insegnamento)

Elementi di base per la risoluzione di sistemi lineari.

Programmazione lineare: metodo del simplesso. I e II fase, algortimo duale. Analisi di Sensitività

Applicazioni della programmazione lineare a problemi aziendali (problemi di produzione, problema della dieta, scelte di investimento,

localizzazione impianti, problemi di marketing, problemi di mix,...).

Teoria della Dualità nella Programmazione Lineare

Data Envelopment Analysis e sue applicazioni.

Programmazione binaria e programmazione intera. Formulazione di problemi aziendali attraverso problemi di programmazione binaria e intera. Cenni al metodo di Branch and Bound.

Bibliografia e materiale didattico

Hillier Frederick S. e Lieberman Gerald J. (2010), "Ricerca operativa", nona edizione, McGraw Hill Italia, Milano

Testi consigliati per la consultazione

Cambini A., Martein L.: Introduzione all'algebra lineare. Elementi di programmazione lineare e non lineare. Pellegrini, Pisa (1984) Christian Albright, Wayne Winston: "Spreadsheet Modeling and Applications: Essentials of Practical Management Science", (1997) Vercellis, C., Business intelligence - Modelli matematici e sistemi per le decisioni, McGraw-Hill (2007).

Zhu, J. Quantitative models for performance evaluation and benchmarking, 2 ed. Springer (2009)

Modalità d'esame

L'esame consta in una prova scritta (2 ore), da svolgersi in aula informatica. Gli studenti devono dimostrare di padroneggiare i contenuti presentati nel corso e la loro abilità nel risolvere problemi. L'esame è diviso in due parte: una teorica ed una pratica. Nella prima parte lo studente deve rispondere a domande di carattere teorico. La seconda parte si svolge al computer e lo studente deve saper leggere un semplice problema di carattere aziendale, deve formalizzarlo come problema matematico, risolverlo usando matlab o excel ed infine deve interpretare i risultati ottenuti.

L'esame è superato con una votazione complessiva di 18 punti.

Ultimo aggiornamento 18/07/2018 11:53

2/2