

Università di Pisa

MODELLISTICA MOLECOLARE DI BIOMOLECOLE

BENEDETTA MENNUCCI

Anno accademico

CdS

Codice

CFU

2018/19

BIOTECNOLOGIE MOLECOLARI

110CC

6

Moduli Settore/i **MODELLISTICA**

CHIM/02

Tipo **LEZIONI** Ore 48

Docente/i

BENEDETTA MENNUCCI

Obiettivi di apprendimento

Conoscenze

MOLECOLARE DI **BIOMOLECOLE**

Lo studente alla fine del corso conoscerà le principali tecniche computazionali che possono essere utilizzate per eseguire

- · Un'analisi conformazionale di piccole e grandi molecole,
- Una simulazione di processi dinamici di sistemi complessi.
- · Uno studio di binding ligando-recettore

Oltre al formalismo e alla comprensione teorica di base, gli studenti imparano a eseguire simulazioni numeriche per calcolare le proprietà dei

Sia gli aspetti teorici del corso che le simulazioni numeriche sono progettate per consentire agli studenti di comprendere appieno i limiti e le potenzialità delle simulazioni rispetto ai dati sperimentali in vista di possibili applicazioni biotecnologiche

Capacità

Lo studente sarà in grado di discutere i contenuti del corso principale utilizzando la terminologia appropriata.

Lo studente saprà utilizzare software di modeling molecolare per lo studio dinamico di sistemi biologici.

Modalità di verifica delle capacità

Lo studente dovrà preparare e discutere una presentazione orale sull'attività svolta durante il corso

Comportamenti

Lo studente potrà sviluppare la capacità di utilizzare modelli teorici per l'interpretazione di misure sperimentali.

Modalità di verifica dei comportamenti

Durante il corso, sarà valuata la capacità dello studente nell'interpretare i principali processi chimico-fisici dei sistemi biologici sulla base di comportamenti atomistici e di interazioni intermolecolari.

Indicazioni metodologiche

- · Le lezioni frontali si svolgono con ausilio di slide
- per il laboratorio computazionale si formano gruppi e si usano i PC delle aule informatiche del Dipartimento di Chimica
- il personale di supporto (tecnici, dottorandi e/o cultori della materia) coadiuva il docente nelle esercitazioni numeriche e nell'assistenza ai laboratori
- il sito di elearning del corso è usato per scaricare materiali didattici, per comunicazioni docente-student
- le interazione tra studente e docente al di fuori delle ore di lezione/laboratorio avvengono attraverso ricevimenti e uso della posta elettronica

Programma (contenuti dell'insegnamento)

- · Introduzione alle interazioni intermolecolari
- · La Meccanica Molecolare come metodo di calcolo di energie e geometrie di sistemi (macro) molecolari.
- · Aspetti principali dei metodi numerici utilizzati nell'analisi conformazionale dei sistemi molecolari di interesse biologico.
- · Il metodo Monte Carlo e sue applicazioni

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- Il metodo della dinamica molecolare nei suoi principali aspetti teorici e numerici.
- Il metodo Docking e il suo nelllo studio del binding ligando-recettore
- Introduzione ai metodi quantistici più utilizzati nella biochimica: alcuni elementi di metodi che combinano approcci quantummeccanici e classici.

Indicazioni per non frequentanti

Registrarsi alla pagina E-learning del corso per scaricare le slides/note delle lezioni.

Modalità d'esame

- L'esame è composto da un prova orale.
- La prova orale consiste in un colloquio tra il candidato e il docente del corso.
- La prova orale non è superata se il candidato non risponde correttamente, esprimendosi in modo chiaro e usando la terminologia corretta, almeno alle domande sui concetti principali presentati nel corso.

Ultimo aggiornamento 18/07/2018 10:14