

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa CALCOLO NUMERICO

GIANNA MARIA DEL CORSO

Anno accademico

CdS

Codice CFU 2018/19

INGEGNERIA DELLE
TELECOMUNICAZIONI

442AA

6

Moduli Settore/i Tipo Ore

CALCOLO NUMERICO MAT/08 LEZIONI 60

GIANNA MARIA DEL CORSO

Docente/i

Obiettivi di apprendimento

Conoscenze

Apprendimento delle tecniche e degli strumenti per la risoluzione numerica di problemi che scaturiscono nelle applicazioni della matematica. L'enfasi è posta sull'analisi degli aspetti computazionali, quali il condizionamento dei problemi esaminati, la stabilità e la complessità dei metodi proposti. Il corso di laboratorio, con l'ausilio dello strumento di calcolo MATLAB, introduce lo studente all'analisi sperimentale degli algoritmi e alla validazione dei risultati.

Modalità di verifica delle conoscenze

L'accertamento e la valutazione delle conoscenze acquisite avverrà mediante prova scritta inerente gli aspetti computazionali ed implementativi dei metodi ilustrati e prova orale incentrata sulla discussione delle proprietà teoriche di tali metodi.

Capacità

Lo studente sarà in grado di illustrare le problematiche computazionali che sorgono nella risoluzione numerica di un problema matematico e nella successiva implementazione del metodo numerico in un ambiente di calcolo scientifico quale MATLAB.

Modalità di verifica delle capacità

La prova scritta è finalizzata a valutare la sensibilità acquisita dallo studente in merito agli aspetti computazionali ed implementativi che sorgono nella risoluzione numerica di problemi matematici mente la prova orale richiede allo studente un'analisi delle proprietà teoriche dei metodi utilizzati.

Comportamenti

Lo studente potrà acquisire e/o sviluppare sensibilità alle problematiche computazionali e numeriche che sorgono nella risoluzione di problemi applicativi individuando approcci risolutivi che integrano conoscenze matematiche ed informatiche.

Modalità di verifica dei comportamenti

Durante le sessioni di laboratorio e le lezioni teoriche sono proposti e descritti esercizi che, partendo da un problema applicativo, ne illustrano la formulazione matematica, la risoluzione numerica e l'algoritmo di calcolo.

Prerequisiti (conoscenze iniziali)

Nozioni di base dell' algebra lineare e dell'analisi matematica in una variabile reale.

Corequisiti

Nessun corequisito è necessario

Prerequisiti per studi successivi

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Le competenze acquisite sono alla base di alcuni corsi della laurea magistrale come il corso di "Computationa Mathematics for Learning and Data Analyisis".

Indicazioni metodologiche

Le lezioni teoriche sono presentate alla lavagna per dare allo studente tempo sufficiente per capire le dimostrazioni presentate. La parte di laboratorio si svolge in aula attrezzata e sono fornite dispense del docente con gli esercizi proposti che sono svolte dagli studenti sotto la supervisione del docente.

Programma (contenuti dell'insegnamento)

- 1. Rappresentazione dei numeri in base, aritmetica di macchina, generazione degli errori. Errore inerente ed algoritmico nel calcolo di una funzione razionale, studio dell'errore algoritmico mediante l'uso di grafi. Gli ambienti MATLAB e Octave.
- 2. Richiami di algebra lineare. Norme vettoriali. Norme matriciali, norma 1,2, ``inf". Localizzazione degli autovalori di una matrice: il teorema di Gershgorin.
- 3. Risoluzione numerica di sistemi lineari. Condizionamento del problema. Sistemi lineari con matrice triangolare. Matrici elementari di Gauss. Il metodo di fattorizzazione LU. Il metodo di eliminazione di Gauss. Tecniche di pivoting. Metodi iterativi per sistemi lineari: generalita' ed analisi della convergenza. Il metodo di Jacobi e di Gauss.—Seidel; condizioni sufficienti per la convergenza.
- 4. Calcolo di autovalori ed autovettori: il metodo delle potenze.
- 5. Risoluzione numerica di equazioni non lineari. Il metodo di bisezione. Metodi di iterazione funzionale: il teorema del punto fisso. Metodo delle tangenti. Polinomi algebrici: condizionamento del calcolo di uno zero semplice, matrice companion.
- 6. Interpolazione polinomiale e quadratura numerica. Esistenza ed unicità del polinomio di interpolazione. Forma di Lagrange del polinomio di interpolazione. Resto dell'interpolazione polinomiale. Quadratura numerica. Generalita' sulle formule di Newton--Cotes. Formula dei trapezi composta: analisi del resto dell'integrazione.

Bibliografia e materiale didattico

R. Bevilacqua, O. Menchi. Appunti di Calcolo Numerico. Dispensa.

L. Gemignani. Dispensa.

Indicazioni per non frequentanti

Sono a disposizione delle video lezioni del docente sulla mediateca del corso tenuto nell'a.a 2016-2017.

Modalità d'esame

Prova scritta e prova orale.

Stage e tirocini

Non sono proposti stage o tirocini

Ultimo aggiornamento 26/09/2018 16:54

2/2