

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

LABORATORY OF DIGITAL DATA PROCESSING

EUSEBIO MARIA STUCCHI

Academic year 2018/19

Course GEOFISICA DI ESPLORAZIONE E

APPLICATA

Code 214DD

Credits 6

Modules Area Type Hours Teacher(s)

LABORATORY OF DIGITALGEO/11 LABORATORI 60 EUSEBIO MARIA STUCCHI

DATA PROCESSING

Obiettivi di apprendimento

Conoscenze

Il corso mira a far acquisire agli studenti capacità operative nell'utilizzo di strumenti numerici per l'elaborazione di dati geofisici. Gran parte del corso è dedita ad esercitazioni di laboratorio con lo strumento informatico Matlab su dati sintetici e reali.

Modalità di verifica delle conoscenze

Lo studente deve dimostrare di saper applicare in modo critico le attivita' illustrate durante tutto il corso dal docente.

· Dimostrazione pratica in laboratorio

Capacità

Al termine del corso lo studente avrà le capacità di sviluppare codici in Matlab tali da rappresentare dati geofisici e da risolvere semplici problemi numerici. Soprattutto avrà le conoscenze necessarie per poter intraprendere in autonomia ulteriori approfondimenti.

Prerequisiti (conoscenze iniziali)

Conoscenze di teroria dei segnali

Conoscenze delle metodologie geofisiche in particolare della sismica a riflessione

Indicazioni metodologiche

Lezioni frontali con l'utilizzo di strumenti software (Matlab)

Programma (contenuti dell'insegnamento)

Lo scopo del corso e' di dare agli studenti le conoscenze numeriche di base per elaborare i dati geofisici. Gli argomenti trattati sono i seguent:

- Introduzione a Matlab: operazioni elementari su matrici e vettori. Alcuni semplici comandi grafici: plot ed imagesc. Cicli for... end e while... end e costrutti tipo if... then... else. Script e funzioni.
- Il modello convoluzionale: funzione di riflettività e traccia convoluzionale; ondina di Ricker e convoluzione di una ondina generica con una traccia impulsionale (esempio tratto dal modello di Marmousi).
- Campionamento e Trasformata di Fourier: il campionamento di una sinusoide; l'alias di una sinusoide; frequenza di Nyquist; analisi
 spettrale della componente verticale ed orizzontale del terremoto di Loma Prieta e di shot sismici.
- Filtraggio di dati geofisici: esempio di applicazione di un filtro (ad esempio calcolato tramite la funzione Matlab fir1) nel tempo e nelle frequenze su un dato sintetico e reale.
- Autocorrelazione e cross-correlazione; proprietà dell'autocorrelazione nei confronti del rumore random; esempio di applicazione della cross-correlazione: il Vibroseis; filtraggio adattato.
- Traformata di Fourier 2D: esempi sintetici e reali; Filtraggio FK ed esempio di applicazione di un filtro nel dominio FK.
- La fase di un'ondina: unwrap della fase; traslazione nei tempi e rotazione dello spettro di fase.
- Fitting lineare per il calcolo delle statiche a rifrazione.
- Ottimizzazione: impostazione di un problema di ottimizzazione utilizzando la funzione fmeansearch di Matlab

Bibliografia e materiale didattico

Dispense del corso

Seismic Data Analysis, Oz Yilmaz, SEG 2001

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Modalità d'esame

Prova pratica finale in laboratorio utilizzando Matlab su alcuni problemi assegnati

Ultimo aggiornamento 25/07/2018 15:51

2/2