

Sistema centralizzato di iscrizione agli esami Syllabus

2018/19

Università di Pisa **FARMACOLOGIA**

ROMANO DANESI

Academic year

Course

MEDICINA E CHIRURGIA Code 053EE

Credits

Modules Area Type Hours Teacher(s) **LEZIONI FARMACOLOGIA BIO/14** 112.50 **ROMANO DANESI**

9

Obiettivi di apprendimento

Conoscenze

Corso Integrato di Farmacologia

CORE CURRICULUM Introduzione al corso

· Definizione di farmaco

Farmacocinetica

- Vie di somministrazione, assorbimento e distribuzione dei farmaci
- Clearance dei farmaci: biotrasformazione ed escrezione
- Cinetica dei farmaci per somministrazione singola e ripetuta; monitoraggio terapeutico

Farmacodinamica

- Meccanismo d'azione dei farmaci e relazione concentrazione-effetto
- · Agonisti e antagonisti; tolleranza farmacologica
- Cause di variabilità di risposta ai farmaci e personalizzazione delle terapie

Tossicologia e farmacovigilanza

- La legislazione sulla farmacovigilanza
- · Classificazione, meccanismi ed esempi di reazioni avverse ai farmaci

Farmacologia generale del sistema nervoso centrale, vegetativo e periferico

· Neurotrasmettitori, recettori e farmaci del sistema nervoso centrale, vegetativo e periferico: principi generali

Farmaci per le malattie neurologiche

- · Farmaci per il trattamento delle demenze
- Farmaci per il trattamento della malattia di Parkinson e delle malattie infiammatorie del sistema nervoso centrale
- Antiepilettici

Farmaci per le malattie psichiatriche

- · Ansiolitici e ipnotici
- Antidepressivi e stabilizzanti dell'umore
- · Antipsicotici tipici e atipici

Farmaci per il trattamento del dolore

· Analgesici oppioidi e anestetici locali

Farmacologia cardiovascolare

- Diuretici
- · Inibitori della renina e ACE, antagonisti del recettore dell'angiotensina II
- · Bloccanti dei recettori beta-adrenergici
- · Bloccanti dei canali del calcio
- · Antianginosi nitrovasodilatatori
- · Digitalici e altri inotropi
- · Farmaci antiaritmici

Farmacologia delle vie respiratorie

A DICTAL

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

- Broncodilatatori agonisti adrenergici
- · Broncodilatatori antagonisti colinergici, derivati xantinici
- Farmaci antistaminici e anti-leucotrienici

Farmaci della coagulazione del sangue

- · Inibitori dell'aggregazione piastrinica
- Anticoagulanti

Farmacologia gastrointestinale

- Inibitori della secrezione acida e gastroprotettori
- · Antiemetici e farmaci regolatori della motilità intestinale

Farmaci anti-infiammatori e immunosoppressori

- · Glucocorticoidi
- Farmaci antiinfiammatori non steroidei (FANS)
- Farmaci immunosoppressori e anti-citochine

Farmaci per il trattamento delle malattie endocrino-metaboliche

- Antidiabetici insuline
- Antidiabetici ipoglicemizzanti orali e altri farmaci
- · Farmaci ipolipemizzanti
- Farmaci per il trattamento dell'osteoporosi, della gotta e dell'iperuricemia

Antibatterici

- · Antagonisti dei folati e dei chinoloni
- · Inibitori della sintesi della parete cellulare
- · Inibitori della sintesi proteica
- Antimicobatterici

Antimicotici

· Antifungini per il trattamento delle micosi locali e sistemiche

Antivirali

- Farmaci impiegati nell'infezione da HIV
- Farmaci per il trattamento delle epatiti e di altre patologie virali

Antitumorali

- · Farmaci citotossici per il trattamento delle neoplasie
- Farmaci target-specifici per il trattamento delle neoplasie

Argomento da definire

Discussione interattiva/pratica di casi di farmacologia clinica

- Discussione di n. 6 casi clinici (I semestre, 6 ore)
- Discussione di n. 6 casi clinici (Il semestre, 6 ore)

Modalità di verifica delle conoscenze

Le conoscenze verranno verificate attraverso la prova d'esame.

Ai fini dell'attribuzione del voto finale, espresso in trentesimi, la commissione valuterà i seguenti aspetti:

- capacità dello studente di stabilire connessioni tra gli argomenti trattati in capitoli diversi del programma
- autonomia nell'individuazione degli errori e della loro correzione
- capacità di utilizzare in modo autonomo la propria conoscenza e comprensione dei contenuti dell'insegnamento per affrontare una discussione approfondita su aspetti critici relativi agli argomenti trattati
- saper esporre le proprie conclusioni in modo chiaro e logico.

Programma (contenuti dell'insegnamento)

1. Definizione di farmaco

Definizione di principio attivo ed eccipiente. Impiego terapeutico, diagnostico e profilattico dei farmaci. Cenni sullo sviluppo preclinico e clinico dei farmaci.

Sistema centralizzato di iscrizione agli esami

Syllabus

Vie di somministrazione, assorbimento e distribuzione dei farmaci

Vie enterali (orale, sublinguale, rettale), parenterali (endovenosa, intramuscolare, sottocutanea, endo-arteriosa, intracavitaria) e topiche. Biodisponibilità e bioequivalenza.

Meccanismo di trasporto passivo e attivo dei farmaci, fattori chimico-fisici che influenzano l'assorbimento. Distribuzione dei farmaci nei vari compartimenti dell'organismo, legame dei farmaci alle proteine plasmatiche, caratteristiche della vascolarizzazione degli organi, barriera ematoencefalica e placentare, volume di distribuzione reale ed apparente.

3. Clearance dei farmaci: biotrasformazione ed escrezione

Reazioni di fase I e fase II, concetto di pro-farmaco, fenomeni di induzione ed inibizione enzimatica. Eliminazione dei farmaci: vie principali (renale, biliare) e secondarie (polmonare, cutanea, secrezione lattea).

4. Cinetica dei farmaci per somministrazione singola e ripetuta; monitoraggio terapeutico

Principali parametri farmacocinetici: t1/2, Tmax, Cmax, AUC, cinetiche di primo ordine e ordine zero, concentrazione plasmatica del farmaco per somministrazione singola e ripetuta, concentrazione plasmatica allo stato stazionario. Monitoraggio terapeutico (farmacocinetico e farmacodinamico) dei farmaci.

5. Meccanismo d'azione dei farmaci e relazione concentrazione-effetto

Classificazione dei recettori e meccanismi di azione recettoriali e non recettoriali dei farmaci. Concetto di affinità e potenza di un farmaco e curva di correlazione tra concentrazione e risposta.

6. Agonisti e antagonisti; tolleranza farmacologica

Definizione di agonisti e antagonisti. Antagonismo chimico (antidoti), farmacologico (competitivo e non competitivo), antagonismo funzionale. Meccanismi molecolari di tachifilassi e tolleranza.

7. Cause di variabilità di risposta ai farmaci e personalizzazione delle terapie

Stato funzionale degli organi di eliminazione, caratteristiche del paziente (età pediatrica, senile, gravidanza), farmacogenetica. Interazioni farmacocinetiche e farmacodinamiche.

8. La legislazione sulla farmacovigilanza

9. Classificazione ed esempi di reazioni avverse ai farmaci

Eventi e reazioni avverse ai farmaci, classificazione delle reazioni avverse di tipo dose-dipendente, dose-indipendente (idiosincrasia ed allergia), croniche (malattie iatrogene), ritardate, da interruzione di trattamento e da fallimento terapeutico. Definizione di indice terapeutico e valutazione del rapporto rischio/beneficio di un farmaco. Meccanismi molecolari e manifestazioni cliniche della dipendenza fisica e psichica da farmaci.

10. Neurotrasmettitori, recettori e farmaci del sistema nervoso centrale, vegetativo e periferico

Distribuzione, funzioni, implicazioni fisiopatologiche e farmacologiche dei principali neuromediatori e dei loro recettori nel sistema nervoso centrale, periferico e vegetativo.

11. Farmaci per il trattamento delle demenze

Classificazione, meccanismo d'azione, impieghi terapeutici e reazioni avverse dei farmaci per il trattamento della malattia di Alzheimer (anticolinesterasici reversibili e irreversibili, inibitori glutamatergici).

12. Farmaci per il trattamento della malattia di Parkinson e delle malattie infiammatorie del SNC

Classificazione, meccanismo d'azione, impieghi terapeutici e reazioni avverse dei farmaci per il trattamento del morbo di Parkinson (L-dopa e dopaminergici diretti, anticolinergici, inibitori enzimatici) e della sclerosi multipla e delle poliradicolopatie infiammatorie (interferone, fingolimod, glatiramer, azatioprina, immunoglobuline iperimmuni).

13. Antiepilettici

Classificazione, meccanismo d'azione, impieghi terapeutici e reazioni avverse dei farmaci antiepilettici che agiscono su GABA, canali del Na+, Ca++ e NMDA. Farmaci per le emergenze convulsive.

14. Ansiolitici e ipnotici

Sistema centralizzato di iscrizione agli esami Syllabus

Classificazione, meccanismo d'azione, impieghi terapeutici e reazioni avverse delle benzodiazepine a breve, intermedia e lunga emivita e di altri ipnotici (zolpidem). Criteri di impiego delle benzodiazepine nel disturbo d'ansia e nell'insonnia.

15. Antidepressivi e stabilizzanti dell'umore

Classificazione, meccanismo d'azione, impieghi terapeutici e reazioni avverse degli antidepressivi triciclici, degli inibitori selettivi della ricaptazione della serotonina, noradrenalina, dopamina (SSRI, SNRI, NaRI, NaSSA), inibitori enzimatici MAO-A e antidepressivi atipici (es. trazodone, atomoxetina). Impieghi, tossicità e monitoraggio terapeutico dei Sali di litio.

16. Antipsicotici tipici e atipici

Classificazione, meccanismo d'azione e selettività recettoriale, impieghi terapeutici e reazioni avverse dei farmaci antipsicotici tipici (tioxanteni, fenotiazine e butirrofenoni) e antipsicotici atipici (clozapina, olanzapina, quietapina, risperidone, ziprasidone e aripiprazolo). Differenza tra antipsicotici tipici e atipici in base ad attività recettoriale, incidenza e tipologia di eventi avversi ed efficacia contro sintomi positivi e negativi.

17. Analgesici oppioidi

Classificazione dei recettori oppioidi (MOPr, DOPr, KOPr), meccanismo d'azione, impieghi terapeutici e reazioni avverse degli analgesici oppioidi agonisti (morfina, fentanil, metadone, ossicodone, codeina), agonisti parziali (buprenorfina) e agonisti-antagonisti (pentazocina). Impieghi degli antagonisti naloxone e naltrexone.

17. Anestetici locali

Classificazione, meccanismo d'azione, impieghi terapeutici e reazioni avverse dei farmaci anestetici locali amino-esteri (procaina, tetracaina) o amino-amidi (mepivacaina, bupivacaina, ropivacaina, levobupivacaina). Cenni sulle modalità di somministrazione e combinazione con vasocostrittori degli anestetici locali.

18. Diuretici

Classificazione e meccanismo d'azione, impieghi terapeutici e reazioni avverse dei diuretici: inibitori dell'anidrasi carbonica (acetazolamide), dell'ansa (furosemide e acido etacrinico), tiazidici e similari (idroclorotiazide, clortalidone, indapamide e metolazone). Risparmiatori di potassio (spironolattone, amiloride, canrenone) e osmotici (mannitolo).

19. Inibitori della renina e ACE, antagonisti del recettore dell'angiotensina II

Classificazione, impieghi terapeutici e reazioni avverse degli inibitori di renina (aliskiren), ACE (captopril, enalapril, ramipril, lisinopril) e antagonisti del recettore dell'angiotensina II (losartan e valsartan).

20. Bloccanti dei recettori beta-adrenergici

Classificazione, impieghi terapeutici e reazioni avverse dei beta-bloccanti non selettivi (propanololo), cardioselettivi (atenololo, metoprololo), alfabeta-bloccanti (labetalolo, carvedilolo). Ruolo dei beta-bloccanti nell'insufficienza cardiaca congestizia.

21. Bloccanti dei canali del calcio

Classificazione dei canali del calcio, meccanismo d'azione, impieghi terapeutici e reazioni avverse di verapamil, diltiazem e diidropiridine (nifedipina e nicardipina).

22. Antianginosi nitrovasodilatatori

Meccanismo d'azione, impieghi terapeutici, vie di somministrazione e reazioni avverse dei nitrati organici (nitroglicerina, isosorbide dinitrato e mononitrato).

23. Digitalici e altri inotropi

Meccanismo d'azione, impieghi terapeutici e reazioni avverse dei digitalici (digossina e metildigossina), degli inotropi adrenergici (dopamina e dobutamina) e degli inotropi inibitori della fosfodiesterasi (amrinone) e dei calcio-sensibilizzanti (levosimendan).

24. Antiaritmici

Meccanismo d'azione, effetti elettrofisiologici cardiaci, impieghi terapeutici e reazioni avverse degli antiaritmici di classe la (es. chinidina), lb (es. lidocaina), lc (flecainide), II (beta-bloccanti), III (amiodarone e sotalolo), IV (calcio-antagonisti) e altri (adenosina, digitalici).

25. Broncodilatatori agonisti adrenergici

Meccanismo d'azione, impieghi terapeutici e reazioni avverse di ?2-stimolanti a breve e lunga durata d'azione (salbutamolo, formoterolo, salmeterolo).

Combinazione con corticosteroidi topici (beclometasone, fluticasone, budesonide).

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

26. Broncodilatatori antagonisti colinergici, derivati xantinici

Meccanismo d'azione, impieghi terapeutici e reazioni avverse di antimuscarinici (ipratropio, tiotropio, oxitropio), derivati xantinici (teoffillina, aminofillina).

27. Farmaci antistaminici e antileucotrienici

Meccanismo d'azione, impieghi terapeutici e reazioni avverse dei cromoni (es. cromoglicato e nedocromile), antagonisti dei recettori H1 dell'istamina (es. cetirizina, loratadina, terfenadina, difenidramina) e degli antagonisti dei recettori dei leucotrieni (es. montelukast, zafirlukast).

28. Inibitori dell'aggregazione piastrinica

Meccanismo d'azione, impieghi terapeutici e reazioni avverse di antiaggreganti piastrinici (es. acido acetilsalicilico, ticlopidina, clopidogrel, ticaglelor, prasugrel). Monitoraggio delle terapie antiaggreganti.

29. Anticoagulanti

Meccanismo d'azione, impieghi terapeutici e reazioni avverse degli anticoagulanti parenterali (eparine ad alto e basso peso molecolare) e orali (warfarin, acenocumarolo) e degli inibitori del fattore Xa (es. apixaban. Rivaroxaban). Monitoraggio delle terapie anticoagulanti.

30. Inibitori della secrezione acida e gastroprotettori

Meccanismo d'azione, impieghi terapeutici e reazioni avverse di bloccanti H2 (es. ranitidina), inibitori della pompa protonica (es. omeprazolo, lansoprazolo, pantoprazolo, esomeprazolo). Antiacidi (idrossido di magnesio e di alluminio), prostaglandine (misoprostol), farmaci di barriera (sucralfato). Farmaci per l'eradicazione di Helicobacter pylori.

31. Antiemetici e farmaci regolatori della motilità intestinale

Meccanismo d'azione, impieghi terapeutici e reazioni avverse degli antiemetici antagonisti 5HT3 (es. alosetron, granisetron, ondansetron, tropisetron), degli inibitori della sostanza P (aprepitant) e dei procinetici (es. metoclopramide, domperidone).

32. Glucocorticoidi

Azioni farmacologiche, impieghi terapeutici e reazioni avverse dei principali glucocortocoidi (idrocortisone, prednisone, prednisolone, metiprednisolone, triamcinolone, betametasone, desametasone). Distinzione dei composti in base alla durata d'azione e alla componente mineralcorticoide.

33. Farmaci antiinfiammatori non steroidei (FANS)

Classificazione, meccanismo d'azione, impieghi terapeutici e reazioni avverse dei FANS (es. acido acetilsalicilico, naproxene, ibuprofene, diclofenac, piroxicam, nimesulide, coxib). Distinzione sulla base della selettività di inibizione di COX1 e 2.

34. Farmaci immunosoppressori e anti-citochine

Meccanismo d'azione, impiego terapeutico e reazioni avverse di metotressato, acido micofenolico, anti-CD20 (rituximab), inibitori della calcineurina ed mTOR (es. ciclosporina, tacrolimus, sirolimus e everolimus). Meccanismo d'azione, impieghi terapeutici e reazioni avverse degli aminosalicilati (sulfasalazina, mesalazina) e degli anti-TNF-alfa (es. infliximab, adalimumab, etanercept, certolizumab).

35. Antidiabetici - insuline

Meccanismo d'azione, impiego terapeutico e reazioni avverse delle insuline ad azione rapida (es. insulina lispro, aspart e glulisina), intermedia (es. insulina lispro) e lunga (es. insulina glargina, detemir), insuline inalatorie. Monitoraggio della terapia insulinica, miscele di insuline, schemi terapeutici.

36. Antidiabetici - ipoglicemizzanti orali e altri farmaci

Meccanismo d'azione, impiego terapeutico e reazioni avverse delle sulfoniluree di prima e seconda generazione (clorpropamide, glibenclamide), biguanidi (metformina), tiazolidinoni (pioglitazone, rosiglitazone), secretagoghi dell'insulina (repaglinide), inibitori dell'alfaglucosidasi (acarbosio), inibitori delle dipeptidil peptidasi (sitagliptin) e del trasportatore SGLT2 (dapagliflozin).

37. Farmaci ipolipemizzanti

Meccanismo d'azione, impieghi terapeutici e reazioni avverse di inibitori della HMG-CoA-reduttasi (statine di I, II e III generazione), fibrati (gemfibrozil, fenofibrato), resine sequestranti gli acidi biliari (es. colestipolo e colestiramina) e inibitori dell'assorbimento intestinale degli steroli (es. ezetimibe). Schemi terapeutici e dosi somministrate.

Sistema centralizzato di iscrizione agli esami

Syllabus

Università di Pisa

38. Farmaci per il trattamento dell'osteoporosi, della gotta e dell'iperuricemia

Meccanismo d'azione, impieghi terapeutici e reazioni avverse dei bifosfonati (azotati e non azotati), dei farmaci che inibiscono la migrazione dei leucociti (colchicina), degli uricosurici (probenecid, sulfinpirazone), e degli inibitori della xantina ossidasi (allopurinolo).

39. Antagonisti dei folati e chinoloni

Classificazione, meccanismo d'azione, spettro antibatterico, impieghi terapeutici e reazioni avverse di: sulfamidici, trimetoprim e loro associazioni. Classificazione, meccanismo d'azione, spettro antibatterico, impieghi terapeutici e reazioni avverse di: chinoloni di prima, seconda e terza generazione (fluorochinoloni).

40. Inibitori della sintesi della parete cellulare

Classificazione, meccanismo d'azione, spettro antibatterico, impieghi terapeutici e reazioni avverse delle beta-lattamine (es. penicilline, cefalosporine, carbapenemi, monobattami), glicopeptidi (es. vancomicina, teicoplanina) ed altri inibitori di parete batterica (lipopeptidi).

41. Inibitori della sintesi proteica

Classificazione, meccanismo d'azione, spettro antibatterico, impieghi terapeutici e reazioni avverse delle tetracicline (es. minociclina e tigeciclina), aminoglicosidi (es. gentamicina, netilmicina, streptomicina), macrolidi (es. azitromicina, claritromicina e telitromicina) e ossazolidinoni (es. linezolid).

42. Antimicobatterici

Meccanismo d'azione, spettro antibatterico, impieghi terapeutici e reazioni avverse dei farmaci per il trattamento della tubercolosi tipica e atipica (rifampicina, acido para-aminosalicilico, etambutolo, etionamide, isoniazide, pirazinamide, fluorochinoloni e macrolidi).

43. Antifungini per il trattamento delle micosi locali e sistemiche

Classificazione, meccanismo d'azione, spettro antifungino, impieghi terapeutici e reazioni avverse dei farmaci polieni, azoli e echinocandine per le micosi sistemiche (amfotericina B, flucitosina, fluconazolo, itraconazolo, caspofungina, voriconazolo) e superficiali (clotrimazolo, econazolo, miconazolo, nistatina, griseofulvina).

44. Farmaci impiegati nell'infezione da HIV

Cenni sul meccanismo d'azione e l'impiego degli inibitori di trascrittasi inversa nucleosidici (abacavir, didanosina, zidovudina, lamivudina) e nonnucleosidici (efavirenz, delavirdina, nevirapina), degli inibitori delle proteasi (darunavir, saquinavir, nelfinavir, tipranavir), della fusione (enfuvirtide), dell'integrazione (raltegravir) e loro combinazioni (terapia HAART).

45. Farmaci per il trattamento delle epatiti ed in altre patologie virali

Farmaci attivi contro i virus epatotropi (es. peg-interferone alfa, lamivudina, ribavirina, entecavir, adefovir, boceprevir e telaprevir), farmaci attivi contro gli herpes virus (es. aciclovir e derivati).

46. Farmaci impiegati nel trattamento delle neoplasie

Meccanismo d'azione, effetti avversi e impiego degli analoghi dei nucleosidi, degli antibiotici antitumorali, degli antimetaboliti, degli inibitori del fuso mitotico. Terapia adiuvante, neoadiuvante e palliativa. Schemi terapeutici e dosi somministrate.

47. Farmaci target-specifici impiegati nel trattamento delle neoplasie

Meccanismo d'azione, effetti avversi e impiego degli inibitori della trasduzione del segnale (anti-EGF, anti-VEGF e anti-mTOR) e degli anticorpi monoclonali (rituximab, bevacizumab, panitumumab) nella terapia dei tumori.

Bibliografia e materiale didattico

KATZÜNG. "Farmacologia generale e clinica". 7ª ediz, Piccin, Padova, 2008. Annunziato, Di Rienzo "Farmacologia", 2010. HARDMAN, LIMBIRD, MOLINOFF, RUDDON, GILMAN. GOODMAN & GILMAN "Le basi farmacologiche della terapia". 10ª ediz, McGraw- Hill, Milano. 2003.

RANG, DALE, RITTER. "Farmacologia". 2ª ediz, Casa Editrice Ambrosiana, Milano, 2001.

Indicazioni per non frequentanti

La frequenza e' obbligatoria

Modalità d'esame

Scritto su argomenti di farmacologia generale con 16 domande a risposta multipla con 4 opzioni di cui solo una è valida. Per ogni risposta esatta 1 punto; per risposte assenti o errate -0,3 punti. I candidati hanno 1 ora per completare lo scritto. L'esame si conclude con una parte

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA orale con due domande sulla parte della farmacologia speciale (classi di farmaci).

RICEVIMENTO STUDENTI

I docenti ricevono su appuntamento preso via e-mail o per telefono.

Ultimo aggiornamento 24/01/2019 17:16

7/7