

Sistema centralizzato di iscrizione agli esami

Programma

<u>Università di Pisa</u>

EVOLUZIONE E DIVERSITÀ DELLE PIANTE

LORENZO PERUZZI

Anno accademico 2018/19

CdS CONSERVAZIONE ED EVOLUZIONE

6

Codice 212EE

CFU

Moduli Settore/i Tipo Ore Docente/i

EVOLUZIONE E BIO/02 LEZIONI 64 LORENZO PERUZZI

DIVERSITÀ DELLE PIANTE

Obiettivi di apprendimento

Conoscenze

Il corso ha lo scopo di fornire le basi teoriche e pratiche per lo studio della diversità e dell'evoluzione nelle piante, con particolare riferimento alla flora del Mediterraneo e d'Italia. Verranno valutati approcci cladistici e fenetici allo studio di caratteri morfologici, cariologici e molecolari.

Modalità di verifica delle conoscenze

Gli studenti apprenderanno le tecniche di identificazione di piante della flora italiana e dovranno realizzare un piccolo erbario tematico. Nell'attività di laboratorio gli studenti apprenderanno le tecniche di base per lo studio dei cromosomi nelle piante e l'utilizzo di software per l'analisi filogenetica e biometrica.

Capacità

La conoscenza delle problematiche relative alla tassonomia e sistematica, concetti di specie, sistemi di classificazione e corretta interpretazione di ricostruzioni filogenetiche è fondamentale per acquisire capacità critica nello studio dei fenomeni evolutivi, in ecologia e in biologia della conservazione.

Prerequisiti (conoscenze iniziali)

Nozioni di Botanica generale

Indicazioni metodologiche

Apprendimento della metodologia standard dello schiacciamento di materiale meristematico vegetale. Osservazione e conteggio dei cromosomi al microscopio ottico. Elaborazione di cariogrammi, idiogrammi. Elaborazione dei principali indici di asimmetria. Produzione ed analisi di matrici di dati per studi cladistici tramite algoritmi di massima parsimonia e per studi morfometrici. Caratteri generali delle principali famiglie della flora italiana. Identificazione di piante della flora italiana mediante flore analitiche e l'osservazione di caratteri morfologici con stereoscopi. Gli studenti dovranno allestire un erbario tematico di almeno venti specie della flora italiana. Una esercitazione sarà dedicata in modo specifico ai metodi di raccolta delle piante e di preparazione dell'erbario.

Sono previste escursioni sul campo per illustrare dal le peculiarità adattative della flora, le principali famiglie di angiosperme della flora italiana e specie di interesse fitogeografico.

Programma (contenuti dell'insegnamento)

Sistematica e tassonomia. Definizioni. Il concetto di specie.

Sistemi di classificazione e nomenclatura: dai sistemi artificiali a quelli filogenetici.

L'organizzazione dei dati biosistematici: principi di tassonomia. Il Codice Internazionale di Nomenclatura per Alghe, Funghi e Piante. Il processo di tipificazione a livello di specie e taxa supraspecifici. Esempi. La variabilità ed i processi di speciazione.

Il ruolo dei cambiamenti cromosomici nell'evoluzione delle piante. Mutazioni geniche, cromosomiche e genomiche. Autopoliploidia, Allopoliploidia, Aneuploidia, Disploidia, Serie Euploidi. Cromosomi politenici e B-cromosomi. Cromosomi omologhi, eterologhi ed omeologhi. Numero gametico (n) e numero cromosomico di base (x), livelli di ploidia. La variazione del numero cromosomico nelle piante. L'interpretazione dell'endemismo tramite l'analisi citogenetica: utilità e limiti. Il cariotipo: definizioni e caratteristiche. Formule cariotipiche. Cariotipi bimodali. Gli indici di asimmetria. L'evoluzione del cariotipo. Tecniche di colorazione, bandeggio (fluorocromi, Giemsa, segmenti allociclici). Lo studio delle figure meiotiche. La citogenetica molecolare: ibridazione *in situ* (ISH, FISH, GISH). La quantità di DNA ed i metodi per misurarla. Variabilità della quantità di DNA nelle piante a livello di popolazione, specie e ranghi tassonomici superiori.

L'importanza dello studio della biologia della riproduzione nelle piante: implicazioni evolutive, ecologiche e conservazionistiche con particolare riferimento alle angiosperme. Sistemi di incrocio e loro variabilità (ercogamia, dicogamia, autocompatibilità), polimorfismi nella lunghezza dello stilo. I cromosomi sessuali nelle piante.

Introduzione all'analisi filogenetica e biometrica. Marcatori molecolari nucleari e loro utilizzi a fini tassonomici. Relazione tra marcatori

DICALLA ALICA

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

molecolari nucleari e organellari.

Valutazione della diversità genetica e della diversità tassonomica (floristica) nelle piante.

I grandi gruppi di diversità vegetale: "Imperi" e Regni. Il Regno Plantae caratterizzato da plastidi derivanti da endosimbiosi primaria. Caratteri generali, cicli biologici, ecologia, filogenesi, sistematica ed esempi del Regno *Plantae* con particolare riferimento al Phylum *Charophyta*.

La classe Embryopsida (piante terrestri).

Sottoclassi *Marchantiidae*, *Bryidae*, *Anthocerotidae* ("briofite": epatiche, muschi e specie affini). Adattamenti morfo-funzionali all'ambiente terrestre e loro caratteristiche generali, cicli biologici, ecologia, filogenesi, sistematica ed esempi.

Evoluzione del ciclo aplodiplonte con predominio della generazione sporofitica ("polisporangiofite"). Le "pteridofite":

sottoclassi Lycopodiidae (crittogame vascolari con microfilli), Psilotidae, (Ophioglossidae), Equisetidae, Marattiidae e Polypodiidae (crittogame vascolari con megafilli): loro caratteristiche generali, cicli biologici, ecologia, filogenesi e sistematica. Importanza e significato dei reperti fossili. Organizzazione dei tessuti vascolari primari e origine di radici e foglie.

Origine dei semi e evoluzione delle "spermatofite". Principali processi di speciazione.

Sottoclasse *Pinidae* ("gimnosperme"): caratteri generali, cicli biologici, ecologia, filogenesi e sistematica. Tendenze evolutive nelle generazione gametofitica, con particolare riferimento alla riduzione dell'archegonio. Ordini *Cycadales*, *Ginkgoales*, *Pinales*, *Gnetales*.

Sottoclasse *Magnoliidae* ("angiosperme"): caratteri generali, cicli biologici, ecologia, filogenesi e sistematica. Scomparsa dell'archegonio e altre peculiarità dello sviluppo del megagametofito. Tendenze evolutive a carico del fiore e degli organi vegetativi e costruzione di sistemi di classificazione filogenetici. Principali ipotesi sull'origine delle angiosperme. Dicotiledoni (superordini Amborellanae, Nymphaeanae, Austrobaileyanae, Magnolianae ("magnoliide" e "paleoerbe"), monocotiledoni (superordine *Lilianae*), vari superordini di "eudicotiledoni".

Bibliografia e materiale didattico

Testi di riferimento

Cleal C.J. & Thomas B.A., 2009 - Introduction to Plant Fossils. Cambridge University Press.

Falistocco Sardegna E., 1998 - Citogenetica vegetale. Patron Editore, Bologna.

Gensel P.G. & Edwards D., 2001 - Plants Invade the Land. Columbia University Press.

Ingrouille M.J. & Eddie B., 2006 - Plants. Diversity and Evolution. Cambridge University Press.

Jong de T. & Klinkhamer P., 2005 - Evolutionary Ecology of Plant Reproductive Strategies. Cambridge University Press.

Judd W.S. & al., 2007 - Botanica sistematica: un approccio filogenetico, Ed. 2. Piccin, Padova.

Levin D. A., 2002 - The role of Chromosomal Change in Plant Evolution. Oxford University Press.

Mauseth J.D., 2006 - Botanica - Biodiversità. Idelson-Gnocchi, Napoli.

Ranker T.A. & Haufler C.H., 2008 - Biology and Evolution of Ferns and Lycophytes. Cambridge University Press.

Evert R.F., Eichhorn S.E., 2013 - La biologia delle piante di Raven. Zanichelli, Bologna.

Sassi D., 2008 - Elementi di Sistematica Biologica. Aracne Editrice.

Stuessy T., 2009 - Plant Taxonomy. The Systematic Evaluation of Comparative Data. Ed. 2. Columbia University Press.

Thompson J.D., 2005 - Plant Evolution in the Mediterranean. Oxford University Press.

Willis K.J., McElwain J.C., 2002 - The evolution of plants. Oxford University Press.

Articoli scientifici originali

Peruzzi L., 2013. "x" is not a bias, but a number with real biological significance. Plant Biosyst. 147(4): 1238-1241.

Peruzzi L., Ero?lu H.E., 2013. Karyotype asymmetry: again, how to measure and what to measure? Comp. Cytogen. 7(1): 1-9.

Siljak-Yakovlev S., Peruzzi L., 2012. Cytogenetic characterization of endemics: past and future. Plant Biosyst. 146(3): 694-702.

Ranche dat

www.bot/biologia.unipi.it/wpb/toscana/index.html www.bot.biologia.unpi.it/chrobase

www.iapt-taxon.org/nomen/main.php

Altro

Power point delle lezioni ed altro materiale didattico recuperabile sul sito e-Learning del docente.

Indicazioni per non frequentanti

La frequenza alle attività di laboratorio, nella misura di almeno il 70%, è obbligatoria.

Modalità d'esame

Esame orale, con preparazione di un seminario di ca. 30 minuti su un argomento concordato con il docente, previa preparazione di un erbario a tema (geografico, tassonomico o ecologico), di almeno 20 piante. L'erbario viene consegnato una settimana prima dell'esame e valutato in trentesimi. La votazione ricevuta fa media con quella dell'esame orale.

Ultimo aggiornamento 16/07/2018 10:55