

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA RISPARMIO ENERGETICO

ROBERTO LENSI

Academic year 2019/20

Course INGEGNERIA ENERGETICA

Code 339II Credits 12

ModulesAreaTypeHoursTeacher(s)RISPARMIO ENERGETICO ING-IND/09LEZIONI60ROBERTO LENSI

INDUSTRIALE

RISPARMIO ENERGETICO ING-IND/11 LEZIONI 60 WALTER GRASSI IN EDILIZIA EVA SCHITO

Obiettivi di apprendimento

Conoscenze

Lo studente avrà acquisito conoscenze in merito agli strumenti, tecniche e tecnologie per il risparmio energetico applicato all'edilizia e ai sistemi industriali e alle principali normative tecniche del settore.

Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà oggetto di valutazione durante l'esame orale.

Capacità

Lo studente sarà in grado di:

- Per il modulo di risparmio energetico industriale: determinare l'efficienza di primo e secondo principio di sistemi industriali, progettare impianti cogenerativi; scegliere le soluzioni migliori per migliorare l'efficienza energetica delle applicazioni industriali;
- Per il modulo di risparmio energetico in edilizia: individuare le richieste energetiche per riscaldamento e raffrescamento di un
 edificio, effettuare una diagnosi energetica di un edificio, individuare le strategie migliori per la riduzione delle richieste energetiche,
 comprese l'uso di fonti energetiche rinnovabili.

Modalità di verifica delle capacità

Durante l'esame orale, lo studente dovrà individuare le soluzioni di risparmio energetico migliori per il caso studio in analisi.

Comportamenti

Lo studente acquisirà maggiore sensibilità alle problematiche energetiche nel campo industriale e degli edifici.

Modalità di verifica dei comportamenti

Durante l'esame orale, si verificherà l'autonomia dello studente nell'individuare le problematiche energetiche nel caso studio in esame.

Prerequisiti (conoscenze iniziali)

Conoscenze di fisica tecnica, energetica generale, macchine, termoenergetica dell'edificio.

Indicazioni metodologiche

Lezioni frontali, esercitazioni, partecipazione a seminari, studio individuale e di gruppo, ricevimenti, uso di materiale didattico

Programma (contenuti dell'insegnamento)

Il corso verte sui metodi per la valutazione ed il miglioramento dell'efficienza energetica nei sistemi industriali e nell'edilizia.

Nel modulo di risparmio energetico industriale sono affrontati i temi della valutazione delle prestazioni energetiche e dei relativi
coefficienti di prestazione alla luce del secondo principio della termodinamica per i sistemi termici sia motori sia operatori.
 Particolare attenzione è rivolta ai sistemi in grado di consentire significativi risparmi di energia primaria come quelli combinati

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

gas/vapore e quelli cogenerativi ed ai sistemi a ciclo inverso, al fine della migliore gestione delle risorse energetiche.

Nel modulo di risparmio energetico in edilizia, vengono discusse le varie metodologie per il calcolo delle prestazioni energetiche
per i servizi di riscaldamento e raffrescamento degli edifici (metodo quasi-stazionario, metodo dinamico). Vengono inoltre descritte
alcune tra le principali tecnologie per il risparmio energetico in edilizia, tra le quali l'utilizzo di pompe di calore, pannelli solari
termici e sistemi integrati con fonti tradizionali e rinnovabili.

Bibliografia e materiale didattico

- Tadeusz J. Kotas, "The Exergy Method of Thermal Plant Analysis", Krieger Publishing Company, Malabar, Florida, 1995.
- John A. Duffie and William A. Beckman, "Solar Engineering of Thermal Processes", Wiley, 2013
- International Standard ISO 13786, "Thermal performance of building components Dynamic thermal characteristics Calculation methods", 2007
- International Standard ISO 13790, "Energy performance of buildings Calculation of energy use for space heating and cooling", 2008
- International Standard ISO 13791, "Thermal performance of buildings Calculation of internal temperatures of a room in summer without mechanical cooling - General criteria and validation procedures", 2004
- Walter Grassi, "Termoenergetica dell'edificio, vol. 2 La gestione dell'energia solare e l'efficienza energetica", MAGGIOLI Ed.
- Walter Grassi, "Termoenergetica dell'edificio, Nozioni di base per la simulazione energetica dinamica degli edifici" EBOOK (con ISBN) YOUCANPRINT.IT

Indica			

__

Modalità d'esame

La prova orale consiste in un colloquio tra candidato e docente, durante la quale verrà richiesto al candidato sia di discutere alcuni argomenti trattati nel corso, sia di risolvere alcuni esercizi/problemi, inerenti al programma. Viene valutata positivamente la capacità dello studente di applicare e generalizzare i contenuti del corso. Il colloquio non avrà esito positivo se lo studente mostra ripetutamente di non saper rispondere a domande sulle nozioni basilari e prerequisiti del corso.

Altri riferimenti web

--

Note

Ultimo aggiornamento 14/11/2019 17:15