

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

EQUAZIONI ALLE DERIVATE PARZIALI

SERGIO SPAGNOLO

Academic year 2019/20
Course FISICA
Code 672AA
Credits 6

Modules Area Type Hours Teacher(s)

EQUAZIONI ALLE MAT/05 LEZIONI 48 SERGIO SPAGNOLO

DERIVATE PARZIALI

Obiettivi di apprendimento

Conoscenze

Ci si propone di fornire agli studenti una conoscenza parziale ma approfondita delle principali proprietà, e relative tecniche, di varie equazioni differenziali (in più variabili) che provengono dallo studio di importanti problemi fisici.

Modalità di verifica delle conoscenze

L'esame finale è orale. Lo studente sarà richiesto di discutere alciuni aspetti fra quelli illustrati a lezione, mettendo anche in luce il suo interesse per la materia.

Capacità

Lo studente dovrebbe acquisire una buona padronanza della materia.

Modalità di verifica delle capacità

L'esame orale consentirà di verificare le capacità dello studente.

Prerequisiti (conoscenze iniziali)

Per seguire il corso in modo proficuo lo studente dovrebbe aver preliminarmente seguito i corsi di base di Analisi matematica del primo biennio, ed in particolare avere una discreta conoscenza della teoria dell'integrale e dei fondamenti dell'Analisi funzionale.

Programma (contenuti dell'insegnamento)

- I Richiami. Integrale di Lebesgue. Fubini-Tonelli. Convergenza dominata. Assoluta continuità dell'integrale. Misure di Radon. Spazi di Banach e Hilbert, operatori lineari, dualità, Hahn-Banach. Elementi di Teoria geometrica della misura: curve, superci, formule di Gauss-Green.
- II Equazioni modello. Eq. del trasporto, curve caratteristiche. Eq. di Laplace in due variabili. Eq. del calore in una variabile spaziale. Eq. della corda vibrante.
- III Analisi funzionale. Spazi L^p. Convoluzione. Mollicatori (Friedrichs e Gauss). Delta di Dirac. Derivate deboli e spazi di Sobolev. Spazi vettoriali topologici (cenni). Spazi *D* ed *S* e loro duali *D'* e *S'* (distribuzioni). Spazi di Sobolev con esponente negativo. Trasformata di Fourier su L^1. Formula d'inversione. Trasf. di Fourier su S, S' ed L^2. Paley-Wiener.
- IV Teoria generale delle EDP. Laplaciano in piu variabili: soluzioni fondamentali. Funzioni armoniche. Teor. della media. Principio del massimo. Eq. ellittiche di tipo generale: Problema di Dirichlet (cenni). Eq. del calore in piu variabili spaziali: soluzione fondamentale, Problema di Cauchy, stima dell'energia. Eq. astratte di evoluzione (cenni). Eq. di Schroedinger. Eq. delle onde nello spazio fisico: formula di Kirchhoff, velocita finita di propagazione, principio di Huyghens. Eq. iperboliche di tipo più generale: metodo dell'energia, buona positura negli spazi di Sobolev. Sistemi iperbolici secondo Hadamard. Sistemi simmetrici. Sistemi strettamente iperbolici: simmetrizzatore pseudo-differenziale (cenni). Equazioni di Maxwell.

Bibliografia e materiale didattico

L. Evans, Partial Dierential Equations, Graduate Stud. Math. 19, AMS 1998.

S. Spagnolo, Appunti del Corso di EDP

Modalità d'esame

L'esame è in forma orale. La frequenza alle lezioni è vivamente consigliata.

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA
Ultimo aggiornamento 05/09/2019 11:03

2/2