

Università di Pisa

TECNOLOGIE ELETTRONICHE E DELLA COMUNICAZIONE

MARCO PATERNI

Academic year 2019/20

Course TECNICHE AUDIOPROTESICHE

(ABILITANTE ALLA PROFESSIONE SANITARIA DI AUDIOPROTESISTA)

Code 634II

Credits 6

Modules Area Type Hours Teacher(s)
SISTEMI E DISPOSITIVI DI ING-INF/06 LEZIONI 24 MARCO PATERNI

SUPPORTO

AUDIOPROTESICO

TECNOLOGIE ING-INF/07 LEZIONI 24 MARCO PATERNI

ELETTRONICHE

Obiettivi di apprendimento

Conoscenze

Al termine del corso:

- lo studente avrà acquisito conoscenze in merito alle tecnologie elettroniche che sono alla base dei sistemi audioprotesici
- · lo studente potrà discriminare i sistemi audioprotescici anche sulla base della tecnologia di riferimento
- o studente avrà acquisito conoscenze per poter seguire l'evoluzione tecnologica dei dispositivi audioprotesici.

Modalità di verifica delle conoscenze

Per l'accertamento delle conoscenze saranno svolte delle prove in itinere utilizzando test e/o incontri tra il docente e gli studenti

Capacità

Al termine del corso:

- lo studente saprà valutare dati elettrici/elettronici relativi ai dispositivi audioprotesici
- lo studente potrà valutare schemi elettronici relaivi al mondo audioprotesico
- lo studente sarà in grado di intercettare problemi da indirizzare ai centri di assistenza specializzata
- lo studente potrà gestire terminologie relative alle tecnologie elettroniche usate in ambito audioprotesico

Modalità di verifica delle capacità

Il corso é intervallato da esercitazioni e simulazioni che rappresentano occasione di approfondimento e di verifica delle capacità acquisitite

Comportamenti

Lo studente potrà saper gestire con maggiore efficacia l'interazione con i produttori e i centri di assistenza che gestiscono sistemi audioprotesici.

Modalità di verifica dei comportamenti

Il corso é intervallato da esercitazioni e simulazioni che permettono di verificare i comportamenti acquisiti.

Prerequisiti (conoscenze iniziali)

Per seguire il corso in modo profiquo è necessario che lo studente abbia le conoscenze basilari di fisica elettrica, chimica e matematica generalmente svolti nei corsi di studio delle scuole superiori di secondo grado.

Indicazioni metodologiche

Il corso si svolge con lezioni frontali presentate con l'ausilio di slide e filmati.

Le lezioni sono intervallate da esercitazioni di gruppo svolte alla lavagna e simulazioni svolte anche con strumenti informatici. Sono fornite indicazioni per eventuali approfondimenti (libri di testo, risorse WEB. software, ecc.).

1/3

Sistema centralizzato di iscrizione agli esami

Syllabus

Tutto il materiale didattico e le simulazioni sono disponibili sul portale di e-learning dell'Università di Pisa.

A supporto degli studenti il docente è a disposizione per colloqui diretti da prenotare telefonicamente o posta elettronica.

Programma (contenuti dell'insegnamento)

Modulo Tecnologie Elettroniche

Semiconduttori

Conduttori, isolanti e semiconduttori. Drogaggio di un semiconduttore. Giunzione PN: caratteristiche e comportamento elettrico.

II Diodo

Il diodo, Curve caratteristiche dei diodi. Il funzionamento del diodo come raddrizzatore. Diodo varactor. Diodo Zener. Il diodo led Ottiche primarie e secondarie. Il diodo led come emettitore di infrarossi. Fotodiodo. Elementi di applicazioni audioprotesiche.

Il transistor

Giunzioni NPN e PNP a riposo ed in condizioni di polarizzazione. Il transistor e le sue caratteristiche. Polarizzazione del transistor. Retta di carico. Instabilità del punto di lavoro. Uso di un segnale in ingresso al transistor. Transistor come diodo. Transistor come interuttore.Transistor a effetto di campo (JFET). Curve caratteristiche di un JFET. Uso del FET come amplificatore. Esempi.

Amplificatori a transistor

Amplificatori a transistor. Modelli per piccoli segnali. Accoppiamento degli amplificatori ai carichi e ai segnali di ingresso. Considerazione per l'ottimizzazione degli amplificatori (polarizzazzione, stabilizzazione, amplificazione). Configurazione Darlington. Amplificatori in classe A, B, AB, D. Applicazioni audioprotesiche.

Simulatori

Simulazione di circuiti elettronici. Illustrazione delle caratteristiche funzionali del programma 5SPICE. Uso del programma 5SPICE per simulare argomenti trattati nel corso delle lezioni: comportamento di condensatori e induttanze, circuiti con diodi, amplificatori a transistor

Circuiti integrati

Circuiti integrati. Caratteristiche generali. Tipologie costruttive. Applicazioni audioprotesiche.

Amplificatori Operazionali

Caratteristich degli ampolificatori operazionali. Uso degli amplificatori operazionali e varie tipologie circuitali: amplificatore invertente e non invertente, sommatore, inseguitore, integratore, derivatore, filtro passa alto, filtro passa basso, oscillatore, amplificatore controllato in tensione, amplificatore strumentale. Gestione della deriva e del rumore. Applicazioni audioprotesiche.

Elementi di elettronica digitale

Principi generali. Porte logiche. Circuiti combinatori e seguenziali. Memorie e registri. Conversione analogica/digitale e digitale/analogica. Microprocessori. DSP. Applicazioni audioprotesiche.

Modulo Sistemi e dispositivi di supporto audioprotesico

Microfoni

Principi di funzionamento. Caratteristiche funzionali. Microfoni a pressione e a gradiente di pressione. Tecnologie costruttive. Adattamenti costruttivi particolar. Microfoni ed ausili audioprotesici. Sistemi microfonici direzionali. Matrici di microfoni. Tecnologia MEMS.

Ricevitori

Principi di funzionamento. Ricevitori magnetici ad armatura bilanciata: ricevitore singolo e duale, livello di uscita, armatura, curva di risposta, membrana. Ricevitori piezoelettrici. Ricevitori MEMS.

Principi di telecomunicazione

Concetti generali di telecomunicazione. Trasmissione mediante segnali analogici e digitali. Concetto di modulazione e demodulazione. Modulazione analogica di una portante analogica (AM, FM. PM). Modulazione analogica di una portante impulsiva (PAM, PWM, PPM). Modulazione digitale di una portante analogica (ASK, FSK, PSK)

Dispositivi di comunicazione a induzione magnetica

Applicazioni audioprotesiche dei sistemi telecoil. Le caratteristiche dell'impianto e conformità. Geometrie delle infrastrutture: loop perimetrale, loop ad eliminazione, loop a pettine, loop multipli. Copertura di grandi superfici. Impianti per applicazioni speciali: il portatore di sistema autioprotesico in ospedale. Vantaggi e svantaggi della tecnologia telecoil. Confronto della tecnologia telecoil con quella microfonica standard. Soluzioni applicative nel mondo audioprotesico.

Sistemi di telecomunicazione in radiofrequenza.

Onda elettromagnetica: caratteristiche, polarizzazione, propagazione, riflessione, rifrazione, difrazione. Antenne.

Sistemi di telecomunicazione in radiofreguenza.

Onda elettromagnetica: caratteristiche, polarizzazione, propagazione, riflessione, rifrazione, difrazione. Antenne: principio di funzionamento e caratteristiche operative. Schema di un trasmettitore in radio frequenza. Schema di un ricevitore in radiofrequenza. Sistemi di comunicazioni in radio frequenza utilizzati in ambito audioprotesico.

Sistemi di telecomunicazione basati su infrarossi.

Caratteristiche degli infrarossi nei sistemi di telecomunicazione. Trasmettitori e ricevitori. IRDA e protocolli digitali (SIR, MIR; FIR). Trasmissione dei segnali analogici. Applicazioni audioprotesiche.

Tecnologia bluetooth.

Introduzione allo standard e cenni storici. Personal Area Network (PAN). Classi di potenza, bande utilizzate e modulazione. Tipologie di rete.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Piconet e scatternet. Ruoli funzionali: master e slave. Evoluzioni dello standard. Applicazioni audioprotesiche. Canale fisico di comunicazione. Indirizzamento. Tipologie di collegamento. Stati funzionali delle stazioni bluetooth e modalità operative. Le varie versioni dello standard. Bluetooth 4.0 e nuovi scenari di utilizzo. Applicazioni audioprotesiche.

Tecnologia WIFI.

Introduzione allo standard e cenni storici. Concetto di WLAN. Banda della tecnologia WIFI. Tipologie di rete (IBSS, BSS, ESS). Access point e distribution system. Servizi di stazione. L'evoluzione dello standard.

Generaratori di suono

I generatori di suono nella riduzione del disturbo acufene. Generatori di rumore bianco, rosa e marrone: tecnologie costruttive analogiche e digitali. Esempi di generatori stand alone e combinati con sistemi audioprotesici.

Compatibilità elettromagnetica.

Fenomeni elettromagnetici ed interferenze. Compatibilità elettromagnetica. Riduzione delle interferenze. Compatibilità elettromagnetica e protesi acustiche. Alcuni esempi di problemi relativi alla compatibilità elettromagnetica nel mondo audioprotesico.

Bibliografia e materiale didattico

Tutto il materiale didattico e le simulazioni sono disponibili sul portale di e-learning dell'Università di Pisa. Su questo materiale sono disponibili indicazioni per bibliografia e libri di testo.

Indicazioni per non frequentanti

Non esistono variazioni per studenti non frequentanti in merito a: programma, modalità d'esame e bibliografia. Si consiglia tuttavia di contattare il docente per un colloquio di chiarimento sui vari aspetti del corso.

Modalità d'esame

L'esame è composto da una prova scritta con una prova orale facoltativa secondo le modalità illustrate di seguito. La prova scritta é costituita da:

- un questionario composto da 31 domande a risposta multipla relativamente al modulo Tecnologie Elettroniche
- un questionario composto da 31 domande a risposta multipla relativamente al modulo Sistemi e dispositivi di supporto audioprotesico

Ogni risposta esatta vale 1 punto, risposte errate e nulle valgono 0 punti.

L'esame è superato se viene raggiunto almeno 18/30 ad entrambi i moduli. Per i punteggi compresi tra 15 e 17 é obbligatoria la prova orale. Per coloro che hanno raggiunto 18/30 possono comunque sostenere una prova orale facoltativa per migliorare il punteggio raggiunto.

La prova orale è costituita un colloquio che verte su domande relativo all'intero programma del corso.

Se non si raggiunge 18/30 ad almeno uno dei due moduli l'esame deve essere ripetuto nel suo complesso (entrambi i moduli)

Ultimo aggiornamento 08/04/2020 10:49

3/3