

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

REAZIONI NUCLEARI DI INTERESSE ASTROFISICO

LAURA ELISA MARCUCCI

Academic year 2020/21
Course FISICA
Code 227BB

Credits 9

Modules Area Type Hours Teacher(s)

REAZIONI NUCLEARI DI FIS/04 LEZIONI 54 LAURA ELISA MARCUCCI

INTERESSE ASTROFISICO

Obiettivi di apprendimento

Conoscenze

Lo studente che segue il corso e supera l'esame avra' 1) conoscenze di base di fisica nucleare, specialemtne sull'interazione nucleare, i sistemi legati e di scattering a pochi corpi, le reazioni nucleare di interesse astrofisico; 2) le capacita' di svolgere il calcolo delle sezioni d'urto e dei fattori astrofisici; 3) le conoscenze necessarie a capire i diversi aspetti degli studi stato dell'arte.

Modalità di verifica delle conoscenze

Durante l'esame orale lo studente deve saper dimostrare la sua conoscenza del materiale del corso con proprieta' di linquaggio. Metodo d'esame: esame finale orale

Prerequisiti (conoscenze iniziali)

Si consiglia allo studente di avere una buona conoscenza di base di meccanica quantistica non relativistica.

Indicazioni metodologiche

Lezioni frontali con frequenza caldamente consigliata. Per meglio seguire il corso si consiglia:

- seguire le lezioni
- partecipare alle attivita' seminariali
- partecipare alle discussioni
- studiare individualmente
- studiare in gruppi

Il corso si avvale di lezioni frontali e di seminari.

Programma (contenuti dell'insegnamento)

-Principali proprieta' dei nuclei - Osservazioni astronomiche e "modelli standard" (teoria della BBN, la catena pp, la reazione 3-alpha, il ciclo CNO, i processi di alpha-burning, s, r, rp e p). - Elementi di teoria delle reazioni nucleari: sezione d'urto e fattore astrofisico, screening elettronico, picco di Gamow e rate di reazione, equazione di Saha. - Metodi sperimentali per l'astrofisica: misure dirette, metodi indiretti. - Calcolo diretto delle reazioni di cattura protone-protone e neutrone-protone. - Overview dello stato dell'arte per le reazioni della catena pp e del ciclo CNO.

Bibliografia e materiale didattico

Letture consigliate:

H.A. Bethe: THE FORMATION OF DEUTERONS BY PROTON COMBINATION Phys. Rev. 54, 248 (1938)

N. Austern: EVALUATION OF THE INTERACTION EFFECT IN n-p CAPTURE Phys. Rev. 92, 670 (1953)

L.E. Marcucci, Kenneth M. Nollett, R. Schiavilla, R.B. Wiringa: MODERN THEORIÉS OF LOW-ENERGY ASTROPHYSICAL REACTIONS Nucl. Phys. A777, 111 (2006)

E.G. Aldeberger et al., SOLAR FUSION CROSS SECTIONS II: THE PP CHAIN AND CNO CYCLES Rev. Mod. Phys. 83, 195 (2011) Testi consigliati:

A.R. Edmonds: ANGULAR MOMENTUM IN QUANTUM MECHANICS Princeton University Press 1996

A. Messiah: QUANTUM MECHANICS Dover Publications, Inc. 1999

K.S. Krane: INTRODUCTORY NUCLEAR PHYSICS, John Wiley and Sons 1988

C. Iliadis: NUCLEAR PHYSICS OF STARS, Wiley-VCH Verlag GmbH & Co. KGaA 2007

Sistema centralizzato di iscrizione agli esami Syllabus

UNIVERSITÀ DI PISA Modalità d'esame

Esame orale.

Ultimo aggiornamento 05/08/2020 18:36

2/2