Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

ELEMENTI DI TOPOLOGIA ALGEBRICA

FILIPPO GIANLUCA CALLEGARO

Anno accademico 2020/21

CdS MATEMATICA

Codice 054AA

CFU 6

Moduli Settore/i Tipo Ore Docente/i

ELEMENTI DI TOPOLOGIA MAT/03 LÈZIONI 48 FILIPPO GIANLUCA ALGEBRICA CALLEGARO

Obiettivi di apprendimento

Conoscenze

Gli studenti che completano il corso con successo devono avere familiarità con le nozioni fondamentali della topologia algebrica: i gruppi di homologia, coomologia e di omotopia dei spazi topologici, e loro applicazioni.

Modalità di verifica delle conoscenze

Esercizi per casa e prova orale.

Capacità

Capacità di formulare correttamente le definizioni degli oggetti principali e gli enunciati dei teoremi, insime con la loro applicazione ad esempi semplici.

Modalità di verifica delle capacità

La soluzione dei problemi per casa certificherà la capacità di risolvere esercizi illustrando la teoria. L'esame orale certificherà la conoscenza della teoria e delle sue applicazioni ad esempi fondamentali.

Comportamenti

Lo studente dovrà essere in grado di discutere di argomenti di topologia algebrica sia con i propri compagni sia con il docente in maniera rigorosa ed espressiva.

Modalità di verifica dei comportamenti

La capacità di discutere di topologua algebrica in maniera rigorosa ed espressiva sarà verificata durante l'esame orale.

Prerequisiti (conoscenze iniziali)

I contenuti degli insegnamenti dei corsi di Geometria 2 ed Algebra 1.

Corequisiti

Nessuno.

Prerequisiti per studi successivi

I contenuti del corso sono prerequisiti per qualsiasi ulteriore sudio soprattutto di carattere geometrico/topologico.

Indicazioni metodologiche

Sistema centralizzato di iscrizione agli esami

Programma

Università <u>di Pisa</u>

Lezioni frontali alla lavagna (o telematiche se sarà necessario). Attività di appendimento:

- frequentazione delle lezioni
- · studio individuale
- · approfondimenti tramite ricerche bibliografiche

Frequenza alle lezionl: caldamente consigliata

Programma (contenuti dell'insegnamento)

- Omologia singolare: costruzione e proprietà di base. Applicazioni classiche.
- · CW-complessi, omologia cellulare.
- Gruppi di omotopia: costruzione e proprietà di base. Approssimazione cellulare. Gruppi di omotopia delle sfere.
- · Anello di coomologia, prodotto cup, dualità di Poincaré ed applicazioni.

Bibliografia e materiale didattico

- Tammo tom Dieck: Algebraic Topology, European mathematical Society, 2008.
- · Allen Hatcher: Algebraic Topology, Cambridge, 2000.
- W. Massey, Singular Homology Theory, Springer, 1980

Modalità d'esame

Esercizi per casa ed esame orale.

Altri riferimenti web

Le informazioni aggiornate ed il materiale didattico saranno reperibili nella pagina e-learning del corso.

Ultimo aggiornamento 28/01/2021 12:24