

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa MECCANICA SPAZIALE

GIOVANNI FEDERICO GRONCHI

Academic year 2020/21

Course MATEMATICA

Code 144AA

Credits 6

ModulesAreaTypeHoursTeacher(s)MECCANICA SPAZIALEMAT/07LEZIONI42GIULIO BAU'

GIOVANNI FEDERICO GRONCHI

Obiettivi di apprendimento

Conoscenze

Il corso si propone di introdurre alcuni risultati matematici utili per le missioni spaziali.

Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà svolta tramite un esame orale.

Capacità

Lo studente conoscera' le basi della progettazione iniziale della traiettoria di una missione spaziale e imparera' come trattare numericamente gli incontri ravvicinati.

Modalità di verifica delle capacità

Durante il corso, saranno mostrati diversi esempi con riferimento ai differenti argomenti trattati.

Comportamenti

Lo studente potrà comprendere meglio la dinamica dei corpi celesti, artificiali e naturali.

Modalità di verifica dei comportamenti

Durante le lezioni gli studenti saranno frequentemente coinvolti nella discussione delle argomentazioni e dei metodi utilizzati.

Prerequisiti (conoscenze iniziali)

Alcuni elementi di Meccanica Celeste.

Programma (contenuti dell'insegnamento)

- richiami sul problema dei due corpi, elementi orbitali classici, sistemi di riferimento;
- · teorema di Lambert;
- approssimazione delle traiettorie interplanetarie tramite patched conics; definizione classica della sfera di influenza di un pianeta; fly-by iperbolico;
- manovre ad impulso: manovre complanari (trasferimenti alla Hohmann e biellittici), rifasamento orbitale e rendez-vous, manovre non complanari (cambio dell'inclinazione e della longitudine del nodo ascendente);
- · regolarizzazione delle collisioni;
- problema dei 2 corpi con massa variabile;
- · il metodo delle transit orbits di Conley;
- cenni al principio del massimo di Pontrjagin;
- incontri ravvicinati: integrabilita' del problema dei 3 corpi ristretto circolare vicino alle collisioni doppie.

Bibliografia e materiale didattico

Bate, Mueller and White: Fundamentals of Astrodymics

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Mengali e Quarta: Fondamenti di Meccanica del Volo Spaziale
Koon, Lo, Marsden and Ross: Dynamical Systems, the Three- Body Problem, and Space Mission Design
Levi: Classical Mechanics with Calculus of Variations and Optimal Control
alcuni articoli di ricerca suggeriti durante il corso

Modalità d'esame

- L'esame è composto da una prova orale.
- La prova orale consiste in un'interrogazione alla lavagna, o su foglio, nella quale lo studente dovra' dimostrare di aver appreso gli argomenti del corso. La prova orale potra' anche essere in forma di seminario, previo accordo con i docenti.
- La prova orale è superata se il candidato avra' dimostrato di aver acquisito sufficiente dimestichezza con gli argomenti e le tecniche oggetto del corso.

Ultimo aggiornamento 28/08/2020 11:17