Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa Cibernetica fisiologica

ALBERTO LANDI

Academic year 2020/21

Course INGEGNERIA ROBOTICA E

DELL'AUTOMAZIONE

Code 260II

Credits 6

ModulesAreaTypeHoursTeacher(s)CIBERNETICAING-INF/04LEZIONI60ALBERTO LANDIFISIOLOGICA

Obiettivi di apprendimento

Conoscenze

L'insegnamento è volto a fornire le conoscenze di base per

- modellare, attraverso gli strumenti matematici propri della teoria dei sistemi e del controllo, i processi fisici e chimici degli organismi viventi, al fine di interpretarne e prevederne il comportamento
- colloquiare con i medici sviluppando un linguaggio e un metodo comprensibile e interdisciplinare
- imparare a dimensionare il controllo per applicazioni cliniche in termini di dosaggio dei farmaci e/o della definizione di nuovi protocolli terapeutici

Modalità di verifica delle conoscenze

Lo studente deve mostrare di aver avere assimilato e capito i principali concetti presentati durante il corso, in un colloquio orale e/o con lo sviluppo di un progetto specifico non obbligatorio

Capacità

Lo studente al termine dell'insegnamento dovrà conoscere e saper applicare:

- la modellazione matematica e la capacità di simulare processi fisiologici
- l'estrazione dai dati clinici dei parametri per una corretta simulazione del modello
- il dimensionamento del controllo per applicazioni cliniche in termini di dosaggio dei farmaci

Modalità di verifica delle capacità

Sono proposti allo studente, in occasione della prova orale finale, problemi che richiedono soluzione analitica su tutte le capacità oggetto del corso.

Comportamenti

L'allievo al termine del corso dovrà essere in grado di analizzare criticamente le specifiche richieste a un sistema complesso di modellazione e controllo per applicazioni biomediche

Modalità di verifica dei comportamenti

La verifica dei comportamenti avviene attraverso discussione durante l'esame orale

Prerequisiti (conoscenze iniziali)

Conoscenze di base di controlli automatici

Corequisiti

Nessuno

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Prerequisiti per studi successivi

Nessuno

Indicazioni metodologiche

Lezioni ed esercitazioni frontali in aula o a distanza durante l'emergenza COVID, con uso di presentazioni in Power Point. Le attività di apprendimento avvengono seguendo le lezioni, partecipando alle discussioni in aula e studiando.

Programma (contenuti dell'insegnamento)

Cibernetica Fisiologica:

- Controllori embedded fisiologici
- · Regolazione zucchero-insulina
- Modello cardiaco e circolatorio
- · Modello respiratorio
- · Modellistica dell'epatite
- Modelli del sistema immunitario
- · Modellistica di HIV
- Modellistica del COVID 19 e ottimizzazione dei lockdown
- Modelli epidemici (dal SIR al COVID)
- · Modelli vaccinali
- · Controllo predittivo: applicazione al caso di HIV
- Controllori Fuzzy

Bibliografia e materiale didattico

Appunti dettagliati delle lezioni (scaricabili da: E-learning e forniti durante il corso (PW: cibfis)) Testi suggeriti per consultazione: J,M. Khoo, Phisiological Control Systems, 1999, Wiley-IEEE Press

Indicazioni per non frequentanti

In caso di difficoltà nell'apprendimento contattare il docente

Modalità d'esame

Progetto di approfondimento sviluppato e concluso durante il corso.

Stage e tirocini

Nessuno

Pagina web del corso https://elearn.ing.unipi.it/

Altri riferimenti web

Ultimo aggiornamento 01/03/2021 19:42