Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

FONDAMENTI DI GEOFISICA

ANDREA TOGNARELLI

Anno accademico

CdS

Codice

CFU

2020/21

SCIENZE GEOLOGICHE

007DD

6

Moduli Settore/i Tipo Ore Docente/i **FONDAMENTI DI** GEO/11

LEZIONI ANDREA TOGNARELLI 48

GEOFISICA

Obiettivi di apprendimento

Conoscenze

Gli studenti acquisiranno conoscenze di base sui campi di potenziale terrestri e su concetti e metodi di sismologia e saranno in grado di comprendere le loro possibili applicazioni al fine di esplorare il sottosuolo terrestre.

Modalità di verifica delle conoscenze

L'esame scritto servirà allo studente per dimostrare la propria comprensione e conoscenza degli argomenti del corso e ad organizzare una efficace e sintetica illustrazione scritta che può comprendere anche dimostrazioni analitiche.

Capacità

Lettura e comprensione di semplici sismogrammi, mappe gravimetriche e magnetometriche.

Modalità di verifica delle capacità

Nella prova scritta saranno inserite domande specifiche di carattere pratico.

Lo studente svilupperà una incrementata sensibilità verso le tematiche geofisiche e le possibilità di studio e di ricerca in questo campo.

Modalità di verifica dei comportamenti

Gli studenti saranno esposti a vari problemi, sia durante le lezioni sia durante la prova di esame.

Prerequisiti (conoscenze iniziali)

Le basi di matematica e fisica impartite dai corsi specifici negli anni precedenti.

Indicazioni metodologiche

Lezioni frontali

Attività didattiche:

frequenza delle lezioni preparazione del rapporto scritto studio individuale

Frequenza: consigliata

Metodi di insegnamento:

lezioni

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Programma (contenuti dell'insegnamento)

Campo di gravità terrestre: leggi fondamentali; densità; geoide; misurazione g (introduzione ai gravimetri); deriva strumentale e gli effetti di maree, latitudine, elevazione e topografia; Correzioni di aria libera, di Bouguer e di terreno; Aria libera e anomalie di Bouguer; anomalie locali e regionali. Campo magnetico terrestre: somiglianze e differenze con il campo gravitazionale e revisione delle leggi fondamentali; suscettibilità e permeabilità; proprietà magnetiche delle rocce; il campo geomagnetico; misurazione B (basi dei magnetometri); variazioni temporali del campo geomagnetico e loro correzioni; anomalie magnetiche. Sismologia di base: elasticità e onde sismiche; equazione dell'onda scalare per le onde del corpo; dalle onde ai raggi, la legge di Snell, che traccia i raggi in media sferici e planari; diffusione e attenuazione; basi dei sismometri; osservazione di sismogrammi a diverse distanze epicentrale; localizzazione dell'ipocentro (Wadati); Equazione di Wiechert-Herglotz; magnitudo; stima del meccanismo focale.

Bibliografia e materiale didattico

Le dispense delle lezioni coprono tutti gli argomenti del corso e sono a disposizione degli studenti. Ulteriori riferimenti bibliografici possono essere trovati lì.

Indicazioni per non frequentanti

Il contenuto del corso è integralmente riportato nel materiale fornito dal docente. Tramite queste e gli ulteriori riferimenti bibliografici, il non frequentante può cercare di sviluppare la necessaria preparazione.

Modalità d'esame

L'esame consiste nel rispondere a 20 domande, di cui 16 a risposta multipla e le rimanenti 4 si riferiscono a piccole dimostrazioni o discussioni da elaborare liberamente. Ogni domanda ha un proprio voto. La somma totale è 30.

Altri riferimenti web

Registro delle lezioni con programma svolto: https://unimap.unipi.it/registri/dettregistriNEW.php?re=3312807::::&ri=013438

Ultimo aggiornamento 06/11/2020 16:26