

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa Patologia Clinica

MARIA FRANZINI

Anno accademico 2020/21

CdS BIOLOGIA APPLICATA ALLA

BIOMEDICINA

Codice 115FF

CFU

Moduli Settore/i Tipo Ore Docente/i
PATOLOGIA CLINICA MED/04 LEZIONI 56 MARIA FRANZINI

6

Obiettivi di apprendimento

Conoscenze

Contenuti Il corso fornisce la conoscenza delle basi patologiche e fisiopatologiche della diagnostica di laboratorio.

Scopo del Corso nell'ambito del Corso di Laurea Lo studio della Patologia Clinica risponde a uno degli obiettivi centrali del corso di Laurea Magistrale in Biologia applicata alla Biomedicina, cioè la formazione di laureati con una preparazione avanzata ed operativa nella biologia di base e applicate.

Modalità di verifica delle conoscenze

L'accertamento delle conoscenze avverrà tramite esame orale. Il docente è disponibile ad incontri di approfondimento da concordare con gli studenti.

Capacità

La patologia clinica studia l'uso dei marcatori biologici in medicina, il corso si propone, quindi, di insegnare le nozioni fondamentali necessarie per la pianificazione, la valutazione e l'interpretazione critica dei principali test di laboratorio, in particolare nell'ambito delle condizioni patologiche discusse nel del corso.

Modalità di verifica delle capacità

L'accertamento delle conoscenze avverrà tramite esame orale.

Comportamenti

Al termine del corso lo studente sarà in grado di discutere e interpretare i principali test di laboratorio nell'ambito delle condizioni patologiche discusse nel corso

Modalità di verifica dei comportamenti

Le conoscenze acquisite e l'accuratezza del linguaggio tecnico saranno valutate durante l'esame finale

Prerequisiti (conoscenze iniziali)

Conoscenze di Biochimica, Fisiologia, Patologia Generale

Indicazioni metodologiche

Lezioni frontali

Programma (contenuti dell'insegnamento)

Introduzione alla Patologia Clinica: Concetto di biomarcatore, il processo di selezione di nuovi biomarcatori. Caratteristiche analitiche di un metodo (accuratezza e precisione, errore analitico totale, coefficiente di variazione, riproducibilità intra e inter-saggio, profilo di imprecisione, il valore reale, specificità e sensibilità analitica). Intervalli di riferimento e livelli decisionali, sensibilità e specificità di un test. Linee guida sulla efficacia della richiesta in termini di migliore correlazione patogenetica e sulla interpretazione critica dei test di laboratorio nelle seguenti condizioni:

Alterazioni della funzione emopoietica: esame emocromocitometrico, parametri numerici; formula leucocitaria; anomalie cellulari, striscio di

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

sangue e morfologia.

<u>Anemie: indagini classificative</u>; diagnosi delle anemie da deficit dei fattori normo-eritropoietici, delle anemie emolitiche e delle emoglobinopatie (disordini quantitativi e qualitativi della sintesi delle emoglobine).

Metabolismo del ferro e parametri per la sua valutazione.

Parametri per la valutazione dell'emolisi intravascolare ed extravascolare.

Emostasi: valutazione delle fasi vasculo-piastrinica, coagulativa, fibrinolitica; modello cellulare del processo emostatico; uso mirato dei test nel monitoraggio delle principali patologie dell'emostasi:

- Test per la valutazione della funzionalità piastrinica: aggregazione;
- Test di screening per la coagulazione: PT (indice ISI, INR), aPTT, TT;
- Test di approfondimento (fibrinogeno, fattori della coagulazione, anticorpi anti-fosfolipidi);
- Test di aggregazione piastrinica.

Inibitori della coagulazione (antitrombina, trombomodulina, proteina C, proteina S). Fibrinolisi, attivatori e inibitori della fibrinolisi (attivatore tissutale del plasminogeno, tPA; inibitore dell'attivatore del plasminogeno, PAI-1).

Malattie emorragiche: malattia di von Willebrand, emofilia A, emofilia B.

Alterazioni delle funzioni epatiche: indici di necrosi e di colestasi; ittero; test metabolici correlati.

Aterosclerosi: Il laboratorio nella valutazione del rischio cardiovascolare, determinazione di: colesterolo totale, colesterolo HDL, colesterolo LDL (diretta e indiretta), trigliceridi.

I biomarcatori di danno miocardico: le troponine cardiache.

<u>Proteine plasmatiche</u>: appropriatezza della richiesta della misurazione delle principali proteine sieriche: Albumina; Proteine di fase acuta (proteina C-reattiva, siero amilioide A, fibrinogeno);

Alterazioni delle funzioni renali: valutazione delle filtrazioni glomerulare; clearance; valutazione della funzione tubolare; il laboratorio in alcune patologie renali.

Esame delle urine: il test di screening e il sedimento; le proteinurie.

Alterazioni del metabolismo glucidico

Marcatori del rimodellamento osseo: biomarcatori di formazione (fosfatasi alcalina ossea, osteocalcina, peptidi C e N terminali del procollagene I); biomarcatori di riassorbimento (prodotti di degradazione del collagene: gal-idrossilisina, peptidi C e N terminali del collagene I, deossipiridolina; indici di attivazione degli osteoclasti).

Approfondimento: esosomi ed ectosomi: biogenesi, cenni sulle possibili funzioni biologiche con particolare riferimento al processo di emostasi.

Bibliografia e materiale didattico

- 1) M. Ciaccio, G. Lippi: Biochimica Clinica e Medicina di Laboratorio. EdiSES I ed.
- 2) Diapositive delle lezioni

Modalità d'esame

Esame orale: lo studente dovrà dimostrare di aver appreso i contenuti del corso e il relativo linguaggio tecnico

Ultimo aggiornamento 10/09/2020 15:33