Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

FISICA E INFORMATICA APPLICATE ALLA RADIOLOGIA

NICOLA BELCARI

Academic year 2021/22

Course TECNICHE DI RADIOLOGIA MEDICA,

PER IMMAGINI E RADIOTERAPIA (ABILITANTE ALLA PROFESSIONE

SANITARIA DI TECNICO DI

RADIOLOGIA MEDICA)

Code 003BA

Credits 6

Modules Area Type Hours Teacher(s)
FISICA APPLICATA ALLA FIS/07 LEZIONI 24 NICOLA BELCARI

STRUMENTAZIONE RADIOLOGICA

INFORMATICA RIS/PACS INF/01 LEZIONI 24 MARCO PATERNI

Obiettivi di apprendimento

Conoscenze

Le basi fisiche dei sistemi di imaging radiologico e di medicina nucleare, Informatica, Sistemi informativi

Modalità di verifica delle conoscenze

Esame orale

Capacità

Al termine del corso lo studente avrà una conoscenza dei principi fisici, dei materiali e del funzionamento deisistemi di imaging radiologico e di medicina nucleare oltre alla conoscenza dell'informatica di base e dei sistemi RIS e PACS, con capacità di estrazione ed elaborazione dei dati

Modalità di verifica delle capacità

Descrizione dei sistemi di imaging; esercizi di estrazione ed elaborazione dei dati, soluzione di problemi su progettazione reti.

Comportamenti

Attenzione alla sicurezza del paziente

Modalità di verifica dei comportamenti

Domande specifiche all'esame orale

Prerequisiti (conoscenze iniziali)

Fisica della radiazione, fisica di base, Matematica scolastiche

Indicazioni metodologiche

Frequenza a lezione, appunti, approfondimento personale

Programma (contenuti dell'insegnamento)

FISICA:

- 1. Introduzione all'imaging biomedico.
- 2. Concetti base della qualità dell'immagine: contrasto e risoluzione spaziale. Il tubo radiogeno: Principi fisici di funzionamento e le

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

sue component

- 3. Fattori che influenzano la produzione di raggi X. I concetti di quantità, qualità e esposizione di un fascio di raggi X. Dimensione efficace della macchia focale e sua variazione del piano dell'immagine. Effetto anodico (Heel). Il filtraggio. Peculiarità del tubo mammografico: il filtraggio con anodo in Molibdeno e Rodio.
- I principi geometrici della radiologia proiettiva. Gli schermi di rinforzo, materiali e peculiarità costruttive. Il film radiografico ed il concetto di densità ottica, curva di H&D
- 5. Il compromesso tra dose e contrasto in radiologia. Il ruolo della radiazione diffusa in radiologia proiettiva e la relativa riduzione di contrasto. Le griglie antidiffusione: i principi fisici e caratteristiche, il rapporto di griglia e il fattore di Bucky. La radiologia digitale. Caratteristiche fisiche dei sistemi CR e relative tecnologie construttive (fosfori fotostimolabili e sistemi di lettura laser). Le CCD.
- Sistemi TFT-flat panel a conversione indiretta. Sistemi radiologici digitali a conversione diretta. I principi fisici degli intensificatori di immagine, Le componenti degli intensificatori di immagine, La fluoroscopia.
- La tomografia assiale computerizzata: principi fisici e tecnologia. Il sinogramma e cenni sulla retroproiezione filtrata.
 Strumentazione di imaging in medicina nucleare: Rivelatori a scintillazione, il fotomoltiplicatore
- 8. La gamma camera e i collimatori a fori paralleli e a pinhole. Principi di funzionamento della SPECT.

INFORMATICA RIS/PACS

Richiami di informatica di base, architettura di un calcolatore, hardware e software.

Le reti di telecomunicazione, protocolli, funzionamento, il web.

Il foglio di calcolo elettronico, le principali istruzioni, i filtri.

Sistemi di Archiviazione. Database e DBMS. Il modello relazionale e i tipi di relazione. Linguaggio SQL.

Sicurezza e Protezione dei dati. Protezione degli Accessi, Sicurezza in rete, Firewall, Crittografia. Firma digitale. Certificati digitali. Protocolli web sicuri.

Sistemi informativi ospedalieri, sistemi informativi dipartimentali. HIS, caratteristiche e funzioni. RIS, caratteristiche e funzioni. PACS, caratteristiche e funzioni. Amministrazione di un PACS. Integrazione HIS/RIS/PACS. Nuove frontiere: PACS cloud.

DICOM. Caratteristiche generali e struttura dello standard. IOD, IOM, Service Class, SOP Class. Ruoli SCP e SCU. Struttura dei file DICOM. Report strutturato. Compatibilità DICOM.

HL7. Caratteristiche generali dello standard. Messaggi HL7. Evoluzione dello standard. HL7 v3. HL7 e XML.

RIM, CDA IHE. Caratteristiche dell'iniziativa IHE. Missione IHE. Profili di integrazione. Technical framework. Domini. Connectathon. IHE integration statement.

Il RIS e il PACS di Area Vasta

Sistemi per il monitoraggio della dose radiante (Syncrodose, Dosewatch, Certegra)

Bibliografia e materiale didattico

Disponibile nel portale e-learning

BUSHBERG, The essential physics of Medical Imaging 2nd edition.

Indicazioni per non frequentanti

Consultare il portale e-learning

Modalità d'esame

Colloquio orale

Altri riferimenti web

Consultare il portale e-learning

Ultimo aggiornamento 25/08/2021 17:15

2/2