

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

LABORATORIO DI STRUMENTAZIONE

ALICE BUFFI

Anno accademico 2022/23

CdS INGEGNERIA ENERGETICA

Codice 338II

CFU 6

ModuliSettore/iTipoOreDocente/iLABORATORIO DIING-INF/07LABORATORI60ALICE BUFFI

STRUMENTAZIONE

Obiettivi di apprendimento

Conoscenze

Il corso si propone di introdurre la strumentazione di base, i sensori, i trasduttori e i metodi di misura per misurazioni elettriche e termiche.

Modalità di verifica delle conoscenze

La verifica delle conoscenze avverrà attraverso una prova orale.

Capacità

Lo studente avrà acquisito la capacità di utilizzare alcuni strumenti di base.

Modalità di verifica delle capacità

Durante la prova d'esame saranno valutate le conoscenze dello studente sugli strumenti di misura e sulle modalità con cui effettuare le prove sperimentali.

Comportamenti

Lo studente potrà acquisire familiarità con gli strumenti di misura e i risultati sperimentali delle misurazioni.

Modalità di verifica dei comportamenti

Durante la prova d'esame sarà verificata la capacità dello studente di saper valutare i parametri di influenza della catena di misura.

Prerequisiti (conoscenze iniziali)

Conoscenze di analisi, fisica generale e misure.

Indicazioni metodologiche

Lezioni frontali ed esercitazioni sperimentali.

Programma (contenuti dell'insegnamento)

Introduzione alla metrologia - Definizioni - Sistema Internazionale - Campioni di misura - Riferibilità - Taratura - Conformità - Incertezza di misura - Incertezza di categoria A - Incertezza di categoria B - Incertezza composta ed estesa - Teorema del limite centrale - Metodo Monte Carlo

Sistemi di misura - Caratteristiche statiche e dinamiche - Curva e diagramma di taratura - Catena generalizzata di misura

Conversione Analogico/Digitale - Campionamento - Teorema di Nyquist Shannon - Aliasing - Troncamento - Spettro discreto - Quantizzazione e codifica - Caratteristica ingresso-uscita convertitore A/D - Errore di quantizzazione - ENOB - Codifica di segnali unipolari e bipolari - Parametri statici e dinamici - Analisi del datasheet commerciale di un Convertitore A/D

Multimetro digitale - Schema a blocchi - Parametri prestazionali - Misure di resistenze piccole - Misure a 2 e 4 fili - Metodo Voltamperometrico - Misure di resistenze elevate - Misure di resistenze di valore "medio" - Ponte di Whetastone - Incertezza di misura e di sensibilità nel ponte di Wheatston

Metodi di misura della temperatura - Termometri bimetallici - Termometri a colonna di liquido - Termoresistenze - Termistori - Termocoppie - Effetti Seebeck, Peltier e Thomson - Leggi e proprietà delle termocoppie - Tecnologie costruttive - Circuiti Termoelettrici - Compensazione giunto freddo

Misure di deformazione - Estensimetri a resistenza elettrica - Gauge Factor - Estensimetri a filo, fotoincisi, a semiconduttore - Circuiti di misura -

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Ponte di Wheatstone - Configurazione a quarto di ponte - Configurazione a mezzo ponte per compensazione della temperatura- Circuiti di collegamento e alimentazione degli estensimetri - Configurazione a ponte intero - Applicazioni - Taratura ponte estensimetrico Misure di pressione - Manometri a colonna di liquido - Manometri a deformazione

Misure di umidità - Igrometri meccanici - Igrometri elettrici

Oscilloscopio digitale - Schema a blocchi - Circuiti di condizionamento - Accoppiamento - Attenuatore compensato - Memoria di acquisizione e circuito di trigger - Campionamento in tempo reale e in tempo equivalente - Ricostruzione del segnale - Impedenza d'ingresso - Sonda attenuatrice compensata dell'oscilloscopio - Sovracompensazione e sottocompensazione della sonda attenuatrice - Analisi del datasheet commerciale oscilloscopio digitale Yokogawa DL850 - Figure di Lissajous

Misure di corrente - Resistenza di shunt - Bobina di Rogowski - Effetto Hall - Sensori di corrente ad Effetto Hall - Configurazione ad anello aperto e chiuso (compensazione di campo) - Sensori di prossimità e posizione ad effetto Hall Cenni su misure di portata - Smart Sensors

Bibliografia e materiale didattico

- · Appunti forniti dal docente
- · VIM International Vocabulary of Metrology
- Guide to the Expression of Uncertainty in Measurement (GUM) JCGM 100:2008
- Evaluation of measurement data Supplement 1 to the "Guide to the expression of uncertainty in measurement" Propagation of distributions using a Monte Carlo method – JCGM 101:200
- · Kirkup, R. B. Frenkel, "An Introduction to Uncertainty in Measurement", Cambridge University Press, 2006
- Zingales, "Misure elettriche. Metodi e strumenti", Utet Università, 1992
- P. Ripka, A. Tipek, "Modern Sensors handbook", Instrumentation and Measurement Series, ISTE Ltd, 2007

Modalità d'esame

Prova orale

Altri riferimenti web

Condice Microsoft Teams db451e0

Ultimo aggiornamento 31/03/2023 12:07