

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

ELECTRIC MACHINES AND DRIVES FOR ENERGY, INDUSTRY AND TRANSPORTATION

LUCA PAPINI

Anno accademico CdS Codice CFU 2022/23 INGEGNERIA DELL'ENERGIA 971II 6

Moduli Settore/i
ELECTRIC MACHINES ING-IND/32
AND DRIVES FOR
ENERGY, INDUSTRY AND
TRANSPORTATION

Tipo Ore Docente/i LEZIONI 60 LUCA PAPINI

Obiettivi di apprendimento

Conoscenze

Il corso ha l'obiettivo didattico di fornire una buona conoscenza di analisi critica di macchine elettriche e azionamenti elettrici da inserire nel contesto di produzione ed utilizzazione di energia elettrica da fonti rinnovabili, mobilità sostenibile ed automazione industriale. La descrizione dei dispositivi elettro-magneto-meccanici che prevendono una interazione fra sistemi elecctromagnetici, meccanici e termici e convertitori statici (elettronica di potenza) viene presentata nelle loro funzionalià principali. La realizzazione, interconnessione, controllo di sistemi realizzati combinando i componenti viene discussa criticamente al fine di evidenziare le peculiarità relativi alla loro applicazione per produzione di energia da fonti rinnovabili, mobilità sostenibile e automazione industriale.

Modalità di verifica delle conoscenze

Lo studente sarà valutato sulla sua capacità di discutere criticamente i principali contenuti del corso utilizzando la terminologia e metodologia appropriata.

Capacità

Lo studente che ha completato il corso sarà in grado di analizzare quantitativamente e criticamente il funzionamento e controllo di sistemi elettromagneto-meccanici

Modalità di verifica delle capacità

La verifica del grado di apprendimento delle conoscenze trasmesse durante il corso avverrà nel contesto dell'esame finale principalmente attraverso la discussione orale con lo studente.

Comportamenti

Uno degli obiettivi generali di questo insegnamento vi è quello di far acquisire agli studenti strumenti di analisi critica di componenti e sistemi elettrici. Per questo, alcuni esempi di interazione fra sistemi elettromagnetici e sistemi di altra natura sono discussi nel contesto di una visione piu' ampia che cerca di inquadrare le peculiarità dei sistemi elettrici in applicazioni contemporanee.

Modalità di verifica dei comportamenti

La verifica dei comportamenti verra' effettuata nel corso dello svolgimento della discussione orale in sede d'esame.

Prerequisiti (conoscenze iniziali)

Le conoscenze di base necessarie al proficuo svolgimento delle attivita' dell'insegnamento derivano dai corsi di Analisi Matematica, Fisica II, Controlli e Automazione e Principi di Ingegneria elettrica.

Prerequisiti per studi successivi

Questo corso non costituisce prerequisito per nessun altro corso.

Indicazioni metodologiche

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Il corso viene svolto con lezioni teoriche frontali in aula ed esercitazioni numeriche/sperimentali applicative. Le lezioni verranno svolte anche con la proiezione di slides, seminari e si prevede l'ultilizzo di calcolatori numerici per simulazioni.

Bibliografia e materiale didattico

Il materiale didattico verra' fornito dal docente durante lo svolgimento del corso.

Modalità d'esame

L'esame è composto da una prova orale che consiste in un colloquio mirato a verificare la conoscenza degli argomenti sviluppati a lezione e le competenze di analisi critica.

Ultimo aggiornamento 30/01/2023 16:57