Si Pro

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa MECCANICA RAZIONALE

GIANLUIGI DEL MAGNO

Anno accademico 2022/23

CdS INGEGNERIA CIVILE AMBIENTALE E

EDILE

Codice 525AA

CFU 6

Moduli Settore/i Tipo Ore Docente/i

MECCANICA RAZIONALE MAT/07 LÉZIONI 60 GIANLUIGI DEL MAGNO PAOLO GIULIETTI

Obiettivi di apprendimento

Conoscenze

Lo studente sarà in grado di impostare e risolvere problemi di statica e di dinamica di corpi rigidi vincolati.

Modalità di verifica delle conoscenze

Ricevimenti ed incontri periodici.

Capacità

Capacità di affrontare problemi di meccanica, sia di ordine teorico che tecnico applicativo, con il dovuto rigore matematico.

Modalità di verifica delle capacità

Ricevimenti personali e di gruppo.

Comportamenti

L'aspettativa è che lo studente sviluppi la capacità di uno studio individuale sistematico finalizzato ad impostare in modo organico problemi tecnico-scientifici sulla base di pochi principi generali.

Modalità di verifica dei comportamenti

Discussione degli argomenti trattati e risoluzione di esercizi in aula e durante i ricevimenti.

Prerequisiti (conoscenze iniziali)

Argomenti trattati nei corsi di Analisi I e II, Geometria ed Algebra Lineare e Fisica I: calcolo differenziale ed integrale, geometria analitica, elementi della teoria degli spazi vettoriali, meccanica del punto materiale.

Sistem Program

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Indicazioni metodologiche

Lezioni frontali con esercitazioni in aula.

Programma (contenuti dell'insegnamento)

- Calcolo vettoriale: Vettori; Operazioni vettoriali: somma, prodotto di un vettore per uno scalare, prodotto scalare, prodotto vettoriale, modulo, prodotti misti; Dipendenza lineare; Base; Componenti di un vettore
- Cinematica del punto: Sistema di riferimento cartesiano; Coordinate cartesiane; Coordinate polari; Coordinate cilindriche;
 Coordinate polari sferiche; Moto di un punto, Velocità e accelerazione di un punto rispetto ad un dato sistema di riferimento; Moto rettilineo uniforme; Moto circolare uniforme; Ascissa curvilinea; Terna di Frenet; Curvatura e raggio di curvatura; Torsione; Formule di Frenet
- Cinematica del corpo rigido: Corpo rigido; Condizione di rigidità; Sistema di riferimento solidale; Formule di Poisson; Velocità angolare di un corpo rigido; Legge delle velocità di un corpo rigido; Moto rigido piano, Campo vettoriale delle velocità; Centro di istantanea rotazione; Teorema di Chasles; Polari fissa e mobile; Moto rigido generale; Asse di Mozzi e asse d'istantanea rotazione; Angoli di Eulero; Velocità angolare di un corpo rigido e angoli di Eulero; Esempi di moti rigidi: traslatorio, polare, rotazionale e elicoidale
- Cinematica relativa: Formule di composizione delle velocità e delle accelerazioni; Legge di composizione delle velocità angolari
- Sistemi vincolati: Sistemi materiali; Configurazione di un sistema materiale; Coordinate Lagrangiane; Gradi di libertà; Vincoli; Classificazione dei vincoli; Vincoli principali per sistemi rigidi piani: cerniera fissa, cerniera mobile, carrello, pattino; Vincolo di rotolamento puro; Vincoli integrabili; Spostamenti virtuali; Spostamenti virtuali reversibili e vincoli bilateri; Spostamenti virtuali per sistemi con vincoli olonomi; Lavoro virtuale; Vincoli ideali; Analisi della condizione di idealità per vari vincoli
- Principi della meccanica: Forze attive e reattive; Forza peso e forza elastica; Gradiente di una funzione scalare; Forze
 conservative e energia potenziale; Rotore di un campo vettoriale; Criterio del rotore per campi conservativi; Calcolo dell'energia
 potenziale di un campo di forze conservativo; Cenni di teoria delle equazioni differenziali ordinarie: teorema di esistenza e unicità
 della soluzione del problema di Cauchy; Equilibrio di un punto materiale; Moto di un punto materiale libero nel campo di
 gravitazionale terrestre; Oscillatore armonico semplice, forzato e smorzato: soluzione generale e soluzione del problema di
 Cauchy; Vincoli di contatto e attrito radente; Legge di Coulomb-Morin
- Geometria delle masse: Sistemi materiali discreti e continui; Sistemi omogenei; Centro di massa; Proprietà del centro di massa;
 Piani e assi di simmetria materiale; Calcolo del centro di massa di un arco di circonferenza omogeneo, di un settore circolare omogeneo e di un cilindro omogeneo; Momento d'inerzia; Matrice d'inerzia; Teorema di Huygens-Steiner; Matrice d'inerzia per sistemi piani; Calcolo momenti d'inerzia: asta omogenea, circonferenza omogenea, lamina rettangolare omogenea, asta nonomogenea, disco omogeneo, cilindro omogeneo; Formule del momento della quantità di moto e dell'energia cinetica per un corpo rigido
- Statica: Forze interne e esterne; Equilibrio di un sistema materiale; Momento di un vettore; Equazioni cardinali della statica; Sistema di forze parallele e centro delle forze parallele; Sistemi labili, ipostatici e iperstatici; Sistemi in equilibrio soggetti a due forze e a tre forze; Arco a 3 cerniere; Travature reticolari; Principio dei lavori virtuali; Lavoro virtuale per sistemi soggetti a vincoli ideali olonomi; Forze generalizzate; Forze generalizzate conservative; Energia potenziale; Metodo della stazionarietà dell'energia potenziale; Stabilità (secondo Lyapunov) di una configurazione di equilibrio; Teorema di Dirichlet-Lagrange; Matrice Hessiana dell'energia potenziale
- Dinamica: Quantità di moto e momento della quantità di un sistema materiale; Equazioni cardinali della dinamica; Equazioni del moto del centro di massa; Integrali primi; Conservazione del momento e della quantità di moto; Energia cinetica; Teorema dell'energia cinetica; Energia Meccanica; Conservazione dell'energia meccanica; Principio di d'Alembert; Relazione e equazione simbolica della dinamica; Equazioni di Lagrange; Equazioni di Eulero-Lagrange per sistemi conservativi

Bibliografia e materiale didattico

Teoria e Esercizi

Esercizi

- Appunti delle lezioni disponibili nel canale Teams del corso o nel sito e-learning della scuola di Ingegneria
- P. Biscari, T. Ruggeri, G. Saccomandi e M.F. Vianello, Meccanica Razionale, 3a Edizione, Unitext 93, Springer Milan, 2015 Disponibile in versione e-book in biblioteca http://www.sba.unipi.it
- G. Amendola, Meccanica Razionale Lezioni Con Esercizi Ragionati per Gli Studenti Dei Corsi Di Laurea in Ingegneria, Tipografia Editrice Pisana, 2015
- P. Biscari, Introduzione Alla Meccanica Razionale. Elementi Di Teoria Con Esercizi, Unitext 94, Milano, Springer, 2016
- D. Serra e C. Trimarco, Esercizi di Meccanica Razionale, Pisa University Press, 2019
- G. Frosali e F. Ricci, Esercizi di meccanica razionale, Ed. Esculapio, 2013

Indicazioni per non frequentanti

Non dissimili da quelle per frequentanti.

Modalità d'esame

L'esame prevede una prova scritta e una prova orale. Entrambe le prove si svolgeranno in presenza.

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Durante la prova scritta è consentito solo l'uso di una calcolatrice e di fogli bianchi per la brutta copia. L'uso di computer, tablet e cellulari non è consentito. Lo svolgimento deve essere scritto su fogli forniti dai docenti.

La prova scritta consiste nella risoluzione di 2 o 3 esercizi. Uno degli esercizi potrebbe richiedere la discussione di un argomento di teoria (per esempio: Formulare il Principio dei lavori virtuali, Descrivere le equazioni di Lagrange-Eulero). La durata della prova scritta è di 3 ore. La prova orale consiste in un colloquio sullo svolgimento della prova scritta e sulla teoria. Durante la prova orale potrà essere richiesto al candidato di risolvere esercizi.

L'ammissione alla prova orale richiede un voto nella prova scritta non inferiore a 16. La prova orale deve svolgersi nello stesso appello della prova scritta e non può essere posticipata.

Per partecipare alle prove scritte e orale è obbligatorio iscriversi attraverso il portale Valutami.

Ultimo aggiornamento 06/08/2022 15:11

3/3