

Università di Pisa

CHIMICA ANALITICA STRUMENTALE E LABORATORIO

TOMMASO LOMONACO

Academic year 2022/23

Course CHIMICA PER L'INDUSTRIA E

L'AMBIENTE

Code 116CC

Credits 9

Modules Area Type Hours Teacher(s)

CHIMICA ANALITICA CHIM/01, CHIM/01 LEZIONI 138 FABIO DI FRANCESCO STRUMENTALE 138 FABIO DI FRANCESCO TOMMASO LOMONACO

Obiettivi di apprendimento

Conoscenze

Al termine del corso lo studente avrà acquisito:

- 1. le conoscenze di base relative alle fonti primarie degli errori sperimentali ed alle procedure per il controllo e l'assicurazione di qualità dei dati analitici;
- 2. le conoscenze di base relative agli aspetti teorici, strumentali ed applicativi delle principali tecniche analitiche strumentali di tipo spettroscopico, elettroanalitico e cromatografico.

Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà effettuata in due fasi:

- valutazione dell'elaborato scritto, sugli argomenti trattati nel corso delle lezioni in aula, e della sua eventuale discussione nel corso del colloquio orale;
- valutazione delle relazioni relative alle esercitazioni strumentali condotte in laboratorio e la loro eventuale discussione nel corso del colloquio orale.

Capacità

Al termine del corso lo studente sarà in grado di :

- impostare ed eseguire una misura analitica impiegando le tecniche strumentale presentate nel corso delle lezioni ed utilizzate in laboratorio:
- presentare in una relazione scritta i risultati delle misure sperimentali.

Modalità di verifica delle capacità

La verifica delle capacità sarà condotta mediante:

- lo svolgimento di analisi strumentali condotte direttamente dallo studente su campioni forniti dal docente:
- la preparazione da parte dello studente di relazioni scritte, per ogni esperienza di laboratorio, che riportino i risultati ottenuti.

Comportamenti

- Lo studente potrà acquisire e/o sviluppare sensibilità nei confronti dei parametri strumenatli più importanti per la corretta esecuzione della misura sperimentale.
- Lo studente potrà saper gestire le problematiche relative alla condivisione di un laboratotio di chimica analitica strumentale con altri
- Lo studente potrà acquisire e/o sviluppare sensibilità nei confronti della qualità e dell'interpretazione dei dati sperimentali raccolti.

Modalità di verifica dei comportamenti

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

- Durante le lezioni in aula sarà valutato il livello di attenzione dello studente mediante il suo coivolgimento nella discussione di un argomento o nella risoluzione di esercizi.
- Durante le sessioni di laboratorio saranno valutati il grado di accuratezza e precisione delle attività svolte.

Prerequisiti (conoscenze iniziali)

Conoscenze di base della chimica analitica.

Indicazioni metodologiche

- Frequenza alle lezioni;
- studio individuale;
- ricerca bibliografica.

Frequenza: fortemente consigliata

Programma (contenuti dell'insegnamento)

Introduzione generale ai metodi analitici strumentali.

Elementi di statistica: funzione di Gauss; descrittori statistici (media, mediane, deviazione standard, interquartile ed ecc); definizione di errori casuali e sistematici; intervallo di confidenza; ipotesi nulla; confronto tra metodi analitici; definizione di outliers e loro identificazione; validazione di una procedura analitica; definizione di materiali certificati e loro utilizzo in chimica analitica.

<u>Principi teorici della Cromatografia.</u> Coefficiente di distribuzione; tempo di ritenzione e tempo morto; fattore di capacità; selettività; efficienza e numero di piatti teorici; teoria del piatto teorico; teoria cinetica e fattori che influiscono sull'allargamento del picco cromatografico; principi di fluidodinamica ed equazione di Van Deemter; risoluzione e sua relazione con i parametri cromatografici.

<u>Gascromatografia</u>: colonne e fasi stazionarie, parametri di flusso e fast-GC, indici di Kovats e costanti di McReynolds; sistemi di iniezione in GC (split-splitless, PTV ed ecc); rivelatori per GC (FID, PID, ECD e TCD); metodi di derivatizzazione in GC.

<u>Cromatografia liquida:</u> pompe; iniettori; colonne; fasi stazionarie e mobili; gradienti binari e ternari; rivelatori per LC (spettrofotometrico, spettrofluorimetrico, a indice di rifrazione ed elettrochimico).

Cromatografia ionica: principi di separazione e rivelazione conduttimetrica.

<u>Cenni di Spettrometria di Massa</u>: sorgenti di ioni (impatto elettronico e ionizzazione chimica); analizzatori di massa a tempo di volo; deflessione magnetica a singola e doppia focalizzazione; quadrupolo; rivelatori di ioni; risoluzione e spettri di massa; -esempi di spettri di massa e cromatogrammi TIC e SIM/MRM.

Componenti e funzionamento di uno spettrofotometro UV-vis. Sorgenti, monocromatore, rivelatori. Rapporto segnale/rumore, modulazione dei segnali. Motivi di deviazione dalla legge di Beer-Lambert.

Componenti e funzionamento di uno spettrofotometro atomico. Sorgenti, atomizzatore a fiamma, atomizzatore elettrotermico, torcia al plasma, correzione assorbimenti non specifici.

Bibliografia e materiale didattico

- K.A. Rubinson, J.F. Rubinson Chimica Analitica Strumentale, Ed. Zanichelli, ISBN 88-08-08959-2
- J.C. Miller and J.N. Miller, Statistics for Analytical Chemistry, Ed. Ellis Horwood PTR Prentice Hall, Chichester (England), ISBN 0 13 030990
- Chimica analitica strumentale di Douglas A. Skoog, James F. Holler, Stanley R. Crouch, ISBN: 8879593420 I libri di testo suggeriti saranno integrati con specifiche pubblicazioni scientifiche.

Letture suggerite:

- IUPAC, Harmonized guidelines for internal quality control in analytical chemistry laboratories, Pure & Appl. Chem., vol. 67, 649-666, 1995
- Analytical Methods Committee of the RSC, Uncertainty of measurement: implication of its use in analytical sciences, Analyst, vol. 120, 2303-2308, 1995
- Analytical Methods Committee of the RSC, Internal quality control of analytical data, Analyst, vol. 120, 29-34, 1995
- R. J. Horwarth, Quality control charting for the analytical laboratory, Analyst, vol. 120, 1851-1873, 1995

Modalità d'esame

L'esame sarà condotto in due fasi:

- prova scritta, con tre quesiti sugli argomenti trattati nel corso delle lezioni in aula, e sua discussione nel corso del colloquio orale;
- relazioni scritte sulle esercitazioni strumentali condotte in laboratorio e loro discussione nel corso del colloquio orale.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Altri riferimenti web

Tutto il materiale didattico relativo alle lezioni in aulaè disponibile ai sito e-learning del DCCI: https://polo3.elearning.unipi.it/ al quale si accede con le credenziali UNIPI

Ultimo aggiornamento 19/09/2022 09:46